首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解决薄互储层的声测井问题,提出了声压-速度有限差分方法:用声压和速度矢量做为场变量,分别描述井内流体和井外弹性固体或双相介质。这样选择场变量的优点是:处理脉冲点源(或线源)与套网格技术相比简单得多;在内边界上的差分格式稳定,精度得到了改进;人为边界上的吸收效果较好。用柱坐标分别给出了井壁上流体与弹性固体、流体与双相介质的声压-速度边界条件,并用守恒积分方法处理了井壁上的边界条件。通过用声压-速度有限差分方法模拟弹性固体和双相介质地层的声场,证明了声压-速度有限差分方法的有效性。  相似文献   

2.
针对铝锭铸造是否脱模的故障检测难题,尝试利用铸模敲击声音信号进行诊断分析。本文首先提出基于改进的小波包算法对敲击声音进行降噪,在对声音信号频域分析后,发现一次敲击后如果铝锭脱模,则一次敲击声音信号和二次敲击声音信号存在明显的峰值频率差,将其作为故障特征参数,并设定阈值,可以对铝锭是否脱模进行故障诊断。现场采集的声音处理实验证明了本文所提方法的有效性。  相似文献   

3.
The finite-difference time-domain method is a simple but powerful numerical method for simulating full-wave acoustic propagation and scattering. However, the method can demand a large amount of computational resources. Traditionally, continuously curved boundaries are represented in a stair-step fashion and thus accurately modeling scattering from a boundary will require a finer discretization than would otherwise be necessary for modeling propagation in a homogeneous medium. However, a fine discretization might not be practical due to limited computational resources. A locally conformal technique is presented here for modeling acoustic scattering from continuously curved rigid boundaries. This technique is low cost, simple to implement, and gives better results for the same grid discretization than the traditional stair-step representation. These improvements can be traded for a coarser discretization which reduces the computational burden. The improved accuracy of this technique is demonstrated for a spherical scatterer.  相似文献   

4.
A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data.  相似文献   

5.
宁方立  董梁  张文治  王康 《物理学报》2012,61(19):190203-190203
为了扩展谐振管内非线性驻波在工程中的应用, 以及克服现有数值计算方法仅局限于求解直圆柱形和指数形谐振管内非线性驻波的问题. 根据变截面的非稳态可压缩热黏性流体Navier-Stokes方程和空间守恒方程, 并基于求解压力速度耦合方程的半隐式算法和交错网格技术, 构建一种能够计算任意形状轴对称谐振管受活塞驱动时内部非线性驻波的有限体积算法. 分别对圆柱形、指数形和圆锥形谐振管内的非线性驻波进行仿真计算. 通过与现有试验结果以及数值仿真结果的对比, 验证了该方法的正确性.并获得除驻波声压之外的另外一些新的物理结果, 包括速度、密度、温度的瞬时变化.在直圆柱形谐振管内产生冲击声压波, 速度波形中出现钉状结构.而在指数形和圆锥形谐振管内产生高声压幅值的驻波, 没有出现冲击波, 速度波形中均未发现钉状结构. 计算结果表明谐振管内非线性驻波的物理属性与谐振管形状之间有密切关系.  相似文献   

6.
A comprehensive theoretical model has been developed for interior sound fields which are created by flexible wall motion resulting from exterior sound fields. Full coupling between the wall and interior acoustic cavity is permitted. An efficient computational method is used to determine acoustic natural frequencies of multiply connected cavities. Simplified formulae are developed for interior sound levels in terms of cavity, wall and external acoustic field parameters. Comparisons of theory and experiment show generally good agreement.  相似文献   

7.
A cross-spectral method for determining the longitudinal velocity of sound in the tissues of a human chest in vivo is proposed and substantiated. The method is based on the detection of a percussion stroke by two acoustic sensors positioned over opposite parts of a lung. Statistical estimates are obtained for the longitudinal velocity of sound in chest tissues (the middle part of the right lung) from a group of three men (40–47 years old) without any evident lung disorders in the frequency ranges of 80–130, 170–290, and 350–500 Hz. The adequacy of the double-resonance acoustic model of the human respiratory tract, which combines the resonance of the air volume in the human chest and the wave resonances of the bronchial tree as a narrow pipe, is experimentally verified.  相似文献   

8.
Used for centuries in the clinical practice, audible percussion is a method of eliciting sounds by tapping various areas of the human body either by finger tips or by a percussion hammer. Despite its advantages, pulmonary diagnostics by percussion is still highly subjective, depends on the physician's skills, and requires quiet surroundings. Automation of this well-established technique could help amplify its existing merits while removing the above drawbacks. In this work, clinical percussion signals from normal volunteers are decomposed into a sum of exponentially damped sinusoids (EDS) whose parameters are determined using the Matrix Pencil Method. Some EDS represent transient oscillation modes of the thorax/abdomen excited by the percussion event, while others are associated with the noise. It is demonstrated that relatively few EDS are usually enough to accurately reconstruct the original signal. It is shown that combining the frequency and damping parameters of these most significant EDS allows for efficient classification of percussion signals into the two main types historically known as "resonant" and "tympanic." This classification ability can provide a basis for the automated objective diagnostics of various pulmonary pathologies including pneumothorax. The algorithm can be implemented on an embedded platform for the battlefield and other emergency applications.  相似文献   

9.
Helmholtz水声换能器弹性壁液腔谐振频率研究   总被引:4,自引:0,他引:4       下载免费PDF全文
桑永杰  蓝宇  丁玥文 《物理学报》2016,65(2):24301-024301
针对传统Helmholtz水声换能器设计中刚性壁假设的局限性,将Helmholtz腔体的弹性计入到液腔谐振频率计算中,实现低频弹性Helmholtz水声换能器液腔谐振频率精确设计.基于细长圆柱壳腔体的低频集中参数模型,导出了腔体弹性引入的附加声阻抗表达式,得到了弹性壁条件下Helmholtz水声换能器等效电路图,给出了考虑了末端修正的弹性壁Helmholtz共振腔液腔谐振频率计算公式.利用ANSYS软件建立了算例模型,仿真分析了不同材质、半径、长度时的Helmholtz共振腔液腔谐振频率.结果对比表明弹性理论值与仿真值符合得很好,相比起传统的刚性壁理论计算结果,本文的弹性壁理论得出的液腔谐振频率值有所降低,与真实情况更加接近.本文的结论可以为精确设计低频弹性Helmholtz水声换能器提供理论支持.  相似文献   

10.
为了提升某重型商用车前围的隔声性能,建立了用于分析前围传递损失的有限元-统计能量分析(FE-SEA)模型。针对前围结构复杂的特点,依据FE-SEA模型建模原则,提出了通过在表面创建声腔来确保能量在模型中的正确传递路径。将仿真结果与测试值对比,二者误差小于1.6 dB(A),验证了FE-SEA方法的准确性。用吸声材料与隔声材料复合设计前围声学包,采用正交试验法对前围声学包进行优化设计并对各个试验方案进行仿真计算。对仿真结果进行极差分析与方差分析,选出了在传递损失、重量和厚度三方面达到最佳平衡的声学包:毛毡(10 mm)+EPDM隔声垫(2 mm)。结果表明,优化后的前围传递损失在测试频率315 Hz~2000 Hz范围内最小提升了3.8 dB(A),最大提升了7 dB(A),前围的隔声性能得到较大的提升。  相似文献   

11.
A method for solving exactly the Helmholtz equation in parabolic rotational coordinates is presented using separability of the eigenfunctions and the Frobenius power series expansion technique. Two examples of interest in acoustics are considered and analyzed quasianalytically: The acoustic pressure in a cavity defined by two paraboloids (forming a lens-shaped structure) with (I) rigid wall boundary conditions and (II) pressure-release boundaries. The rigid-wall (pressure-release) acoustic enclosure problem is a Neumann (Dirichlet) boundary condition problem. In both cases, eigenfunctions and eigenmodes are calculated and the shape dependence of the eigenvalue for the ground state is examined.  相似文献   

12.
We present a new interface reconstruction technique, the Local Front Reconstruction Method (LFRM), for incompressible multiphase flows. This new method falls in the category of Front Tracking methods but it shares automatic topology handling characteristics of the previously proposed Level Contour Reconstruction Method (LCRM). The LFRM tracks the phase interface explicitly as in Front Tracking but there is no logical connectivity between interface elements thus greatly easing the algorithmic complexity. Topological changes such as interfacial merging or pinch off are dealt with automatically and naturally as in the Level Contour Reconstruction Method. Here the method is described for both two- and three-dimensional flow geometries. The interfacial reconstruction technique in the LFRM differs from that in the LCRM formulation by foregoing using an Eulerian distance field function. Instead, the LFRM uses information from the original interface elements directly to generate the new interface in a mass conservative way thus showing significantly improved local mass conservation. Because the reconstruction procedure is independently carried out in each individual reconstruction cell after an initial localization process, an adaptive reconstruction procedure can be easily implemented to increase the accuracy while at the same time significantly decreasing the computational time required to perform the reconstruction. Several benchmarking tests are performed to validate the improved accuracy and computational efficiency as compared to the LCRM. The results demonstrate superior performance of the LFRM in maintaining detailed interfacial shapes and good local mass conservation especially when using low-resolution Eulerian grids.  相似文献   

13.
MFSK浅海远程通信多径抑制的频率分组编码方法   总被引:4,自引:0,他引:4       下载免费PDF全文
多频移键控调制技术(MFSK)对信道衰落有良好的适应性,是远程水声通信的重要技术。但是,用于浅海远程水声通信时,由于多径传播的影响,导致严重的码间干扰(ISI),使得远程微弱信号的频率估计产生较大偏差,误码率显著增加。本文针对远程水下信道和MFSK调制的特点,提出了一种新的频率分组编码(FGC)方法。该方法改变了传统MFSK的数据帧格式,相邻符号采用不同组的频率进行编码映射,有效抑制了多径干扰。在深入研究新方法统计特性的基础上进行了湖试验证,结果表明,采用FGC新方法的通信系统,多径抑制有效,性能稳健,更适合于80-100km水声远程通信。  相似文献   

14.
A new approach for measuring acoustic impedance is developed by using artificial neural network (ANN) algorithm. Instead of using impedance tube, a rectangular room or a box is simulated with known boundary conditions at some boundaries and an unknown acoustic impedance at one side of the wall. A training data basis for the ANN algorithm is evaluated by similar source method which was developed earlier by Too and Su [Too G-PJ, Su T-K. Estimation of scattering sound field via nearfield measurement by source methods. Appl Acoust. 1999;58:261-81 (SCI) (EI)] for the estimation of interior and exterior sound field. The training data basis is constructed by evaluating of acoustic pressure at a field point with various acoustic impedance conditions at one side of the wall. Then, the inversion for unknown acoustic impedance of a wall is performed by measuring several field data and substituting these data into ANN algorithm. The simulation result indicates that the prediction of acoustic impedance is very accurate with error percentage under 1%. In addition, one field point measurement in the present approach for acoustic impedance provides more straightforward and easier evaluation than that in the two point measurement of impedance tube.  相似文献   

15.
This paper reports an exploratory study of the aeroacoustics of a merging flow at a duct junction with the same width in all branches and different merging angles. The focus is put on the acoustic generation due to the flow unsteadiness. The study is carried out by the direct aeroacoustic simulation (DAS) approach, which solves the unsteady compressible Navier–Stokes equations and the perfect gas equation of state simultaneously using the conservation element and solution element (CE/SE) method. The Mach number based on the maximum inlet velocity of side branch is 0.1 and the Reynolds number of the flow based on duct width and this velocity is 2.3×105. The numerical simulations are performed in two dimensions and the aeroacoustics at different merging angles (30°, 45°, 60° and 90°) are studied. Both the levels of unsteady interactions of merging flow structures and the efficiency of the acoustic generation are observed to increase with the merging angles, where the increase in acoustic efficiency can be up to three orders of magnitude. The major acoustic source is found to be the fluctuating wall pressure induced by the flow unsteadiness in the downstream branch. A scaling law between the wall fluctuating force and the acoustic efficiency is also derived.  相似文献   

16.
A hydrophone calibration procedure that considerably reduces the error caused by the acoustic field distortions in a hydroacoustic tank is proposed. The procedure is based on the definition of the reduced electric transfer impedances of transducers (i.e., the electric transfer impedances reduced to the spherical wave propagation law) and consists in measuring the electric transfer impedances for different distances between hydroacoustic transducers. The sensitivity of the hydrophone under calibration is calculated from the far-field values of the reduced electric transfer impedances. The latter are determined using a mathematical model of the hydrophone in the form of a system that contains a point sensing element and a finite number of point sources of acoustic signals (point reflectors). A method of determining the number and coordinates of the point reflectors from the analysis of the acoustic “images” of the hydrophone’s reflecting surface is proposed. The measuring technique, the algorithms of mathematical processing, and the results of experimental studies are considered. A comparative analysis of the results of the hydrophone calibration with respect to the field by the reciprocity method is performed for the cases of using the conventional technique and the proposed method.  相似文献   

17.
The investigation of the wall pressure excitations over transportation vehicle panel is of great interest to improve the knowledge of vehicle interior noise transmission and also for future noise reduction strategies. A particularly useful task concerns the characterization and the separation of both acoustic and turbulent components of the wall pressure excitation. A new application of the Proper Orthogonal Decomposition (POD) is tested from two different databases: (i) wall pressure fields synthesized from theoretical average models and (ii) wall pressure fields obtained from Lattice Boltzmann Method numerical simulation. In each case, POD application leads to an energetic partitioning of the wall pressure field that permits to well decouple both acoustic and turbulent fields, especially for mid and high frequencies under interest. To validate such separation and to demonstrate the effectiveness of the POD method, the wavenumber spectrum analysis as well as phase analysis is successively performed. Such a new splitting method provides an instantaneous acoustic–turbulent separation of an inhomogeneous wall pressure field, suggesting many useful future applications.  相似文献   

18.
Chest percussion is a traditional technique used for the physical examination of pulmonary injuries and diseases. It is a method of tapping body parts with fingers or small instruments to evaluate the size, consistency, borders, and presence of fluid/air in the lungs and abdomen. Percussion has been successfully used for the diagnosis of such potentially lethal conditions as traumatic and tension pneumothorax. This technique, however, has certain shortcomings, including limitations of the human ear and the subjectivity of the administrator, that lead to overall low sensitivity. Automation of the method by using a standardized percussion source and computerized classification of digitized signals would remove the subjective factor and other limitations of the technique. It would also enable rapid on-site diagnostics of pulmonary traumas when thorough clinical examination is impossible. This paper lays the groundwork for an objective signal classification approach based on a general physical model of a damped harmonic oscillator. Using this concept, critical parameters that effectively subdivide percussion signals into three main groups, historically known as "tympanic," "resonant," and "dull," are identified, opening the possibility for automated diagnostics of air/liquid inclusions in the thorax and abdomen. The key role of damping in forming the character of the percussion signal is investigated using a 3D thorax phantom. The contribution of the abdominal component into the complex multimode spectrum of chest percussion signals is demonstrated.  相似文献   

19.
曹娜  陈时  曹辉  王成会  刘航 《物理学报》2020,(3):163-169
提出了一种新的求解非线性波动方程的数值迭代法,它是一种半解析的方法.与完全的数值计算方法扰法相比,它能够考虑各阶谐波的相互作用,且能够满足能量守恒定律.用它研究了非线性声波在液体中的传播性质,结果表明,在微扰法适用的声强范围内迭代法也适用,在微扰法不适用的一个较宽的声强范围内迭代法依然适用.  相似文献   

20.
A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection, and acoustic frequencies as high as 11 GHz can be detected, as reported in this paper. The technique offers perspectives for single cell imaging. The in-plane resolution is limited by the pump and probe spot sizes, i.e. ∼1 μm, and the in-depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate the reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non-invasive technique in the fields of bio-engineering and medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号