首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
掺杂对铌酸锶钡钾钠晶体性能的影响   总被引:2,自引:0,他引:2  
  相似文献   

2.
采用溶胶-凝胶旋涂法制备多孔结构的TiO2/SrTiO3复合薄膜,研究TiO2/SrTiO3异质结薄膜结构对光催化性能的影响,并采用XRD、SEM等测试手段对样品的结构和形貌进行表征.结果表明:TiO2/SrTiO3复合薄膜的光催化效率高于单一的TiO2薄膜或SrTiO3薄膜,薄膜的结构组成对复合薄膜的光催化效果影响很大.采用"四层SrTiO3及一层TiO2"的结构组成时,复合薄膜对亚甲基蓝溶液的光催化效率最高,2h降解率为72.1%.  相似文献   

3.
以自制氢氧化铌作为铌源,草酸作为螯合剂,以酒石酸钾钠替代碳酸钠和碳酸钾作为钾源和钠源,乙二醇作为酯化剂,采用sol—gel法制备了铌酸钠钾(简称KNN)粉体。使用IR和TG/DSC对干凝胶的成分及溶胶形成过程中的机理进行了研究,使用XRD和SEM对制备的纳米粉体的晶型和形貌进行了表征和观察,研究了预烧温度对于KNN粉体结构和形貌的影响,并解释了产生这些变化的原因。  相似文献   

4.
掺杂铌酸锂单晶光纤的制备王,冯子亮,李和平,王良盛,朱建国,焦志峰,徐晓菲(材料科学系)单晶光纤是激光技术与晶体生长技术相结合的产物,是近年来发展起来的新型光电子材料 ̄[1~2],它兼备块状晶体和一般石英光纤的功能.单晶光纤与块状晶体相比,具有体积小...  相似文献   

5.
采用金属有机物分解法在石英衬底上制备了Pr掺杂SrTiO3薄膜材料,并对其光学性能进行了研究。Raman谱显示Pr掺杂SrTiO3样品中存在极性纳米微区。另外,所有样品都表现出高的光学透过率,并且Pr的含量对样品的透过率和能隙都有明显影响,这与Pr掺杂造成样品的晶粒大小、晶格常数、结晶度以及氧空位浓度的变化有关。  相似文献   

6.
为提升铌酸钾钠基无铅陶瓷的透光率,使用传统固相法制备了0.95(K1/2 Na1/2)NbO3-0.05Ba(Zn1/3 Nb2/3)O3-x mol%LiBiO2(简称0.95KNN-0.05BZN-x%LB)透明陶瓷,对其透光率进行表征.结果发现:当x=1时,陶瓷的透光率最高(65%,780 nm);而当掺杂量继续...  相似文献   

7.
研究了A位非化学计量比对铌酸钾钠陶瓷极化程度的影响。采用固相反应法制备了0.96K0.5+xNa0.5+xNbO3-0.04LiSbO3系无铅压电陶瓷,通过建立钙钛矿结构的极化模型,研究了x取不同值时,外加电场、温度对陶瓷极化及压电性能的影响。研究结果表明:A位适当过量的铌酸钾钠陶瓷极化时,对温度和电场没有强烈依赖性,可以使极化足够充分,能有效提高铌酸钾钠基陶瓷的压电性能;相反,A位不过量的铌酸钾钠陶瓷极化对温度和电场敏感,容易击穿,极化不充分,降低了铌酸钾钠基陶瓷的压电性能。  相似文献   

8.
伴随着科学技术的发展和人类环保意识的增强,压电陶瓷无铅化已经成为必然趋势, 而铌酸钾钠KNN(KxNa(1-x)NbO3)基陶瓷以其优异的压电性能和较高的居里温度倍受关注.文中着重从新的组元、离子取代改性、烧结助剂和温度稳定性4个方面总结和分析了近年来KNN基无铅压电陶瓷研究状况,认为进一步提高KNN基陶瓷的电性能,解决温度稳定性问题并深入探索其微观机制应该成为未来的研究热点.提出了把弛豫机制引入KNN基陶瓷中,造成弥散相变,这样既提高了温度稳定性,又保持了较高的介电和压电性能;同时提出要探索纳米微畴对KNN基无铅压电陶瓷电性能的影响;最后对KNN基陶瓷下一阶段的工作进行了展望.  相似文献   

9.
采用溶胶凝胶法制备了不同晶型的YFeO3粉末,通过DTA-TG,XRD,BET,UV-Vis DRS等技术手段对样品进行表征分析,并且根据亚甲基蓝溶液在可见光下的分解情况研究了样品的可见光光催化性能.结果表明:在温度从973K上升到1073K的过程中,YFeO3的晶型发生了变化,从开始的六方相向正交相转变.与正交相YFeO3相比,六方相YFeO3具有更大的比表面积、更大的吸收边、更窄的禁带宽度,其价带位置更负,导带位置更正,在可见光下对于亚甲基蓝溶液的降解效果也更好.  相似文献   

10.
11.
利用传统固熔烧结法研究了Ce掺杂的95KNN-5LiSbO3无铅压电陶瓷(简称KNN-LS)的微观结构、压电性质、老化率和防潮性能。实验结果显示,掺杂CeO2对KNN-LS陶瓷在烧结温度、质量损耗、压电性质和微观结构有特殊的影响规律,本文从微观反应机理上对其做了解释。成功制备出高压电常数(255pC/N)、高致密度(98.1%)、低老化率和高防潮性能的无铅压电陶瓷样品,表明这是一种很有应用潜力的无铅压电材料。  相似文献   

12.
采用溶胶—凝胶法,在S i(111)衬底上制备了ZnO:Fe3+薄膜,研究了不同退火工艺对其微结构的影响.磁性测量表明,制备的3%以下掺铁样品在室温下具有铁磁性,随着Fe3+浓度的提高,饱和磁化强度增长.  相似文献   

13.
过渡金属氧化物不仅可用作助熔剂,改善陶瓷的烧结特性,同时也可作为掺杂物在陶瓷材料中进行离子取代,改善陶瓷的性能.本文详细叙述了过渡金属氧化物对KNN基无铅压电陶瓷烧结特性、微观结构、介电性能、压电性能、铁电性能的影响.分析总结过渡金属氧化物在改善KNN基无铅压电陶性能方面所起的主要作用,为今后助熔剂改性KNN基无铅压电陶瓷的研究提供参考.  相似文献   

14.
目的制备(K0.5Na0.5)NbO3(KNN)无铅压电陶瓷并研究其结构和性能。方法采用传统固相法,用XRD,SEM等手段对KNN无铅压电陶瓷材料的相结构和显微形貌进行了表征。结果KNN压电陶瓷材料为单一的正交晶系的钙钛矿结构。对KNN无铅压电陶瓷的电性能测试表明,KNN陶瓷具有高的压电常数d33=127 pC/N,高的机电耦合系数Kp=0.41,高的温度Tc=428℃和低的介电损耗tanδ=0.028(10 kHz)的优点;KNN陶瓷存在着饱满的电滞回线,其剩余极化率Pr为18.8μC/cm2,其矫顽场Ec为9.65 kV/cm;所得的陶瓷的密度和电性能要远优于用同样制备方法和烧结方式所得的陶瓷的性能,并且也优于用等静压工艺所得的陶瓷的性能。结论KNN陶瓷是高频压电器件较理想的备选材料之一。  相似文献   

15.
Nd doped multiferroic BiFeO3 (Bi0.94Nd0.06FeO3 (BNF)) nanotubes were successfully synthesized by a sol-gel template method.Electron microscopy investigations exhibited that these nanotubes had straight and smooth profile with diameters of about 200 nm and wall thickness of about 20 nm.A perovskite-type structure of BNF was confirmed in the nanotubes by high-resolution transmission electron microscopy and selected area electron diffraction analysis.These nanotubes had high resistivity.The dielectric constant...  相似文献   

16.
目的研究液相掺铌对BaTiO3系PTCR陶瓷材料电性能的影响。方法采用溶胶-凝胶一步法工艺和不同的降温速率。结果获得了室温电阻率2ρ5℃=28.93Ω.cm,升阻比Rmax/Rm in>1×106,阻温系数α30>15.00×10-2/℃,耐压强度Vbr>210V/mm,居里温度Tc=130℃的PTCR陶瓷材料。结论施主元素Nb以液相的形式添加分布更加均匀,材料的室温电阻率随施主元素Nb掺杂量增加呈U形变化,适量掺杂施主元素Nb可明显提高材料的PTCR特性,加快降温速率会明显削弱材料的电性能。  相似文献   

17.
采用sol-gel方法在Pt(111)/Ti/SiO2/Si(100)衬底上制备出了(100)择优取向的BiFeO3薄膜.XRD研究表明,600~650℃退火的薄膜结晶较好.AFM形貌显示,650℃退火的薄膜中等轴状晶粒大小均匀(直径100~150nm),薄膜较为致密.电学性能测量结果表明,650℃退火、厚度为840nm的薄膜的2Pr值为2.8mC/cm2;在50kV/cm外加电场下,漏电流为2.7×10-5 A/cm2.电流-电压特性显示,在欧姆区之上,薄膜的主要导电机制为波尔-弗兰克尔发射导电.  相似文献   

18.
研究了添加少量低熔物SiO2作烧结促进剂的的低温烧结改性PbTiO3压电陶瓷的制备工艺,确定出能充分挖掘其优良性能的较佳工艺参数。在此工艺扌制备的陶瓷具有低烧结温度、高压电活性、大压电各向异性、高机械品质因数等优点,可应用于叠层压电降压变压器、叠层压电陶瓷滤波器等叠层压电器件方面。  相似文献   

19.
采用了不同的施主掺杂方式,通过过剩施主的一次和二次掺杂材料的室温电阻率和PTCR效应的研究,从缺陷化学的角度,讨论了引入方式与施、受主相互补偿机制的关系和对材料电学性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号