首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The feasibility of a high-gradient magnetic separation process, utilizing magnetite as the energizable element in lieu of stainless steel wool, is evaluated by means of an equilibrium, two-particle, magnetic hetero-flocculation model. The model calculates the net force, defined as the sum of the magnetic, electrostatic, and van der Waals forces, exerted on a paramagnetic nanoparticle that is in the proximity of a fixed magnetite particle. Since the nanoparticle-magnetite system is assumed to be in direct contact with the moving fluid, the influence of the hydrodynamic force on the magnetic attractive force between the two particles is also explored. This model clearly reveals the ranges and conditions over which each of these various forces contributes to the net force relative to Brownian (thermal) motion. The model also reveals the feasibility of using magnetite particles instead of stainless steel as the energizable element for high-gradient magnetic separation. Important variables investigated include the size and surface charge of the particles, the magnetic field, the flow velocity, the electrolyte concentration, and the magnetic susceptibility of the nanoparticle. Copyright 2000 Academic Press.  相似文献   

2.
长程范德华力导向作用下胶体凝聚的计算机模拟   总被引:2,自引:0,他引:2  
采用计算机模拟方法研究了长程范德华力在胶体凝聚过程中的作用, 发现由于胶粒间的范德华力是长程力, 它对胶粒或团簇运动将产生导向作用. 与不考虑导向作用的扩散控制团簇凝聚(DLCA)模型比较, 这种导向作用不仅加速了胶体的凝聚过程, 而且形成了更致密、分形维数更大的结构体. 研究还发现, 长程范德华力导向作用对胶粒的初始浓度非常敏感, 不论是在凝聚物的结构还是凝聚速率方面, 只有在胶粒初始浓度较低时, 该导向作用效应才明显. 其可能的原因是,在胶粒初始浓度较高时, 由于胶粒布朗运动的平均自由程很短而且位阻效应大, 从而使导向作用效应未能反映出来.  相似文献   

3.
The hydrodynamic interaction between a rising bubble and a sedimenting particle during microbubble flotation is considered. The effects of attractive van der Waals forces and attractive or repulsive electrostatic forces are included. A mathematical model is presented which is used to perform a trajectory analysis and to calculate collision efficiencies between the bubble and particle. It is shown that collision efficiencies and the nature of the bubble-particle interactions are strongly dependent on the relative strengths of the van der Waals and electrostatic forces and on the lengthscales over which these forces act. It is demonstrated that optimal operating conditions can be suggested to achieve efficient microbubble flotation by correctly accounting for the interaction of van der Waals, electrostatic, and hydrodynamic forces. Copyright 1999 Academic Press.  相似文献   

4.
The boundary effects on DC-electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles' surfaces. The electrokinetic slip-velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained and the physical insight for the behavior of the colloidal cylinders are discussed in conjunction with the experimental observations in the literature.  相似文献   

5.
The interaction force between a very hydrophobic polymer surface and colloidal silica particles with a roughness of 10–15 nm has been measured in aqueous solutions of KOH and KCl using an atomic force microscope. The interaction can be described according to the DLVO theory by an electrical double-layer force that is repulsive at long distances and attractive at short distances and an attractive van der Waals force. The electrical double-layer potentials are compared to the zeta potentials of Teflon AF and the silica spheres. The roughness of the silica particles leads to an underestimation of the short-range attraction and the surface potential. Both KCl and KOH solutions affect the potential of the interacting surfaces. OH ions that adsorb preferentially to the Teflon AF surface create higher potentials than Cl ions. Range and strength of the attractive interaction are not affected by KCl solutions but reduced by addition of KOH. This can be explained by decreasing potential differences between the silica sphere and Teflon AF with increasing KOH concentration. In addition, the preferential adsorption of OH ions may lead to a reduction of the van der Waals interaction. The presence of nanobubbles, too, might play a role.  相似文献   

6.
A trajectory analysis of particles near a micropatterned charged substrate under radial impinging jet flow conditions is presented to investigate the effect of surface charge heterogeneity on particle trajectory and deposition efficiency. The surface charge heterogeneity is modeled as concentric bands of specified width and pitch having positive and negative surface potentials. The flow distribution is obtained using finite element analysis of the governing Navier-Stokes equations. The particle trajectory analysis takes into consideration the hydrodynamic interactions, gravity, van der Waals and electrostatic double layer interactions. The presence of surface charge heterogeneity on the substrate gives rise to an oscillating particle trajectory near the collector surface due to repulsive and attractive forces. As a result of the coupled effects of hydrodynamic and colloidal forces, the particle trajectories and deposition efficiencies are increasingly affected by surface charge heterogeneity as one moves radially away from the stagnation point. The results indicate that it is possible to render collectors with up to 50% favorable surface fraction completely unfavorable by modifying the ratio of the radial to normal fluid velocity. Utilizing the real favorable area fraction of the collector, the patch model expression for calculating the deposition efficiency is modified for impinging jet flow geometry.  相似文献   

7.
The processes of attachment and detachment of small or medium-sized particles to relatively large bubbles during microflotation are considered in terms of the heterocoagulation theory. Calculations are made for the conditions that the surface potentials are of similar sign and constant, that one of the surface potentials is small, that hydrophobic attraction is absent, and that there are no surface deformations. Under these conditions bubble-particle aggregates may form as a result of an electrostatic attraction which exceeds the repulsive van der Waals force at intermediate distances. Next to electrostatic and van der Waals forces, hydrodynamic and gravitational forces are considered. These forces may overcome the electrostatic repulsion at large distances and promote particle bubble attachment. Strong electrostatic attraction at small distances, arising at a large difference of the surface potentials of the bubble and the particle and of low electrolyte concentrations, can prevent subsequent detachment by hydrodynamic and gravitational forces. With increasing electrolyte concentration the electrostatic barrier increases and the attractive electrostatic force diminishes. As a result, a critical electrolyte concentration for microflotation exists. Above this concentration attachment may still occur but it is followed by detachment. At lower electrolyte concentrations the electrostatic attractive force prevents the detachment. The dependence of the critical electrolyte concentration on the values of the bubble and particle potentials and the Hamaker constant is calculated. The critical concentration does not depend on particle or bubble size if the absolute values of the total detachment force and the total pressing force coincide, which is the case for Stokes and potential flow. For every electrolyte concentration lower than the critical value there are two critical particle sizes that limit the flotation possibility. For small particle sizes attachment is impossible because the pressing force is smaller than the electrostatic barrier. For large particle sizes detachment cannot be prevented because the detachment force exceeds the maximum electrostatic attraction. A microflotation domain of intermediate particle sizes exists in which irreversible heterocoagulation occurs. Copyright 2001 Academic Press.  相似文献   

8.
Very small bubbles which partially coat the surface of particles influence whether or not heterocoagulation between a particle and a bubble occurs. The electrostatic and van der Waals forces of interaction between particles and bubbles were calculated as a function of electrolyte concentration, particle size, and the size and distributions of these very small bubbles present on the particle surface. The height of the surface force barrier was compared with the hydrodynamic pressing force under conditions of flotation. The presence of these very small bubbles has a profound effect on the interaction between particles and bubbles and, in particular, strongly decreases the critical particle radius for heterocoagulation.  相似文献   

9.
A combined theoretical and experimental study of the adhesion of alumina particles and polystyrene latex spheres to silicon dioxide surfaces was performed. A boundary element technique was used to model electrostatic interactions between micron-scale particles and planar surfaces when the particles and surfaces were in contact. This method allows quantitative evaluation of the effects of particle geometry and surface roughness on the electrostatic interaction. The electrostatic interactions are combined with a previously developed model for van der Waals forces in particle adhesion. The combined model accounts for the effects of particle and substrate geometry, surface roughness and asperity deformation on the adhesion force. Predictions from the combined model are compared with experimental measurements made with an atomic force microscope. Measurements are made in aqueous solutions of varying ionic strength and solution pH. While van der Waals forces are generally dominant when particles are in contact with surfaces, results obtained here indicate that electrostatic interactions contribute to the overall adhesion force in certain cases. Specifically, alumina particles with complex geometries were found to adhere to surfaces due to both electrostatic and van der Waals interactions, while polystyrene latex spheres were not affected by electrostatic forces when in contact with various surfaces.  相似文献   

10.
The interaction between particles in a colloidal system can be significantly affected by their bridging by polyelectrolyte chains. In this paper, the bridging is investigated by using a self-consistent field approach which takes into account the van der Waals interactions between the segments of the polyelectrolyte molecules and the plates, as well as the electrostatic and volume exclusion interactions. A positive contribution to the force between two plates is generated by the van der Waals interactions between the segments and the plates. This positive (repulsive) contribution plays an important role in the force when the distances between the plates are small. With increasing van der Waals interaction strength between segments and plates, the force between the plates becomes more repulsive at small distances and more attractive at large distances. When the surfaces of the plates have a constant surface electrical potential and a charge sign opposite to that of the polyelectrolyte chains, the force between the two plates becomes less attractive as the bulk polyelectrolyte concentration increases. This behavior is due to a higher bulk counterion concentration dissociated from the polyelectrolyte molecules. At short distances, the force between plates is more repulsive for stiffer chains. A comparison between theoretical and experimental results regarding the contraction of the interlayer separation between the platelets of vermiculite clays against the concentration of poly(vinyl methyl ether) was made.  相似文献   

11.
Surface‐inactive, highly hydrophilic particles are utilized to effectively and reversibly stabilize oil‐in‐water emulsions. This is a result of attractive van der Waals forces between particles and oil droplets in water, which are sufficient to trap the particles in close proximity to oil–water interfaces when repulsive forces between particles and oil droplets are suppressed. The emulsifying efficiency of the highly hydrophilic particles is determined by van der Waals attraction between particle monolayer shells and oil droplets enclosed therein and is inversely proportional to the particle size, while their stabilizing efficiency is determined by van der Waals attraction between single particles and oil droplets, which is proportional to the particle size. This differentiation in mechanism between emulsification and stabilization will significantly advance our knowledge of emulsions, thus enabling better control and design of emulsion‐based technologies in practice.  相似文献   

12.
Surface‐inactive, highly hydrophilic particles are utilized to effectively and reversibly stabilize oil‐in‐water emulsions. This is a result of attractive van der Waals forces between particles and oil droplets in water, which are sufficient to trap the particles in close proximity to oil–water interfaces when repulsive forces between particles and oil droplets are suppressed. The emulsifying efficiency of the highly hydrophilic particles is determined by van der Waals attraction between particle monolayer shells and oil droplets enclosed therein and is inversely proportional to the particle size, while their stabilizing efficiency is determined by van der Waals attraction between single particles and oil droplets, which is proportional to the particle size. This differentiation in mechanism between emulsification and stabilization will significantly advance our knowledge of emulsions, thus enabling better control and design of emulsion‐based technologies in practice.  相似文献   

13.
van der Waals forces are one of several forces that control the adhesion between two materials. These forces are important to quantify in adhesion studies because they are always present and are always attractive. The major problem in calculating the van der Waals interaction between colloidal particles is that of evaluating the Hamaker constant. Hence, an accurately determined Hamaker constant for a given material is needed when interfacial phenomena such as adhesion are discussed in terms of the total potential energy between a particle and a substrate. In this paper, a new simple and accurate methodology for the estimation of the Hamaker constant is introduced. The results are in good agreement with those values found in literature.  相似文献   

14.
The friction and adhesion between pairs of materials (silica, alumina, and polytetrafluoroethylene) have been studied and interpreted in terms of the long-ranged interactions present. In ambient laboratory air, the interactions are dominated by van der Waals attraction and strong adhesion leading to significant frictional forces. In the presence of the ionic liquid (IL) ethylammonium nitrate (EAN) the van der Waals interaction is suppressed and the attractive/adhesive interactions which lead to "stiction" are removed, resulting in an at least a 10-fold reduction in the friction force at large applied loads. The friction coefficient for each system was determined; coefficients obtained in air were significantly larger than those obtained in the presence of EAN (which ranged between 0.1 and 0.25), and variation in the friction coefficients between systems was correlated with changes in surface roughness. As the viscosity of ILs can be relatively high, which has implications for the lubricating properties, the hydrodynamic forces between the surfaces have therefore also been studied. The linear increase in repulsive force with speed, expected from hydrodynamic interactions, is clearly observed, and these forces further inhibit the potential for stiction. Remarkably, the viscosity extracted from the data is dramatically reduced compared to the bulk value, indicative of a surface ordering effect which significantly reduces viscous losses.  相似文献   

15.
This work presents a theoretical study of the forces established between colloidal particles connected by means of a concave liquid bridge, where the solid particles are partially wetted by a certain amount of liquid also possessing a dry portion of their surfaces. In our analysis, we adopt a two-particle model assuming that the solids are spherical and with the same sizes and properties and that the liquid meniscus features an arc-of-circumference contour. The forces considered are the typical capillary ones, namely, wetting and Laplace forces, as well as the van der Waals force, assuming the particles uncharged. We analyze different parameters which govern the liquid bridge: interparticle separation, wetting angle, and liquid volume, which later determine the value of the forces. Due to the dual characteristic of the particles' surfaces, wet and dry, the forces are to be determined numerically in each case. The results indicate that the capillary forces are dominant in most of the situations meanwhile the van der Waals force is noticeable at very short distances between the particles.  相似文献   

16.
The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.  相似文献   

17.
Force interactions of porous silica particles against mirror-polished stainless steel surfaces were quantified in the presence of various solvents to facilitate processing of ceramics with less reliance on organic aids which subsequently need to be burned off. The results were compared to and found to be in good agreement to idealized models of van der Waals force interactions. Significantly, van der Waals attractive forces between steel surfaces and silica surfaces were minimized through the use of tetrahydrofuran and enhanced using methanol. The solvent selections were further extended to settling behavior and were found to follow the general trends determined by Stokes law. The methods presented herein can be extended to other real-world systems.  相似文献   

18.
The deposition of Brownian submicron aerosol particles of high density in fibrous filters with allowance for interception effect, influence of gravitational, van der Waals forces, and the gas slip on the surface of ultrafine fibers was considered. Based on the numerical solution of the equation of convective diffusion in the field of external forces, the capture coefficient was calculated as a function of particle size and density, the angle between the vectors of gravity force, and the face flow velocity. It was shown that, for descending flow, the radius of most penetrating dense particles appeared to be noticeably smaller than for the ascending flow.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 352–356.Original Russian Text Copyright © 2005 by Kirsh.  相似文献   

19.
A practical limitation of the application of Smoluchowski's classical estimate for the collisions probability of two diffusing spherical particles in Brownian motion is the non-consideration of interparticle forcves. For suspended particles in water such forces can arise from the disturbance the particle causes in the fluid (hydrodynamic forces), from the cloud of ions which surround an electrically charged particle (double layer forces) or they can be of molecular origin (van der Waals forces). In this paper corrections to Smoluckhowski's collision probability are computed when such forces operate Scoluchowski's collision probability are computed when such forces operate between two approaching particles of various sizes. Results for several values of the van der Waals energy of attraction and the ionic strength of the electrolyte are presented in a way convenient for particle collision modeling.  相似文献   

20.
A theoretical analysis of particle deposition kinetics onto walls of parallel-plate and cylindrical channels is presented. Rigorous transport equations are formulated by taking into account specific surface forces as well as external forces, e.g., gravity. By solving the transport equations numerically, the dimensionless mass transfer Sherwood number is determined as a function of various dimensionless parameters introduced such as Pe, Gr, Ad, and Dl, accounting for convection and diffusion, and for gravity, dispersion, and electrical double-layer interactions, respectively. The influence of attractive surface forces and gravity on the deposition kinetics is graphically presented and discussed. For large particles, i.e., about 1-μm diameter (Pe > 1), and for short distances from the point where deposition starts, a considerable increase in particle flux (up to an order of magnitude) is predicted over previous analytical values when strong attractive double-layer forces are present. For particles smaller than 0.1-μm diameter (Pe < 10-4) our numerical results show that particle deposition rates may be successfully predicted by an analytical formula derived for particles of negligible size even in the presence of double-layer attractions (provided external forces are absent). Experimental results reported in the literature obtained under conditions of negligible gravity force are reinterpreted in terms of the present theory. A somewhat closer agreement with experimental data as compared to the analytical formula mentioned above is found in cases of strong double-layer attractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号