首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用脉冲梯度场核磁共振技术(PFG—NMR)研究了水、乙醇和乙醇一水混合液在硫酸交联的壳聚糖渗透汽化膜和未交联的壳聚糖渗透汽化膜中的自扩散过程,得到了乙醇和水的溶解度和自扩散系数,阐述了水和乙醇透过壳聚糖膜的机理;实验结果表明:水和乙醇是分别由两种不同类型的扩散通道透过膜的;水是由亲水性的离子化通道扩散透过膜,而乙醇是由亲油性的高分子无定形区扩散透过膜;PFG—NMR方法所得到的结果与渗透汽化实验所得到的结果完全一致。  相似文献   

2.
Dense membranes made by crosslinking of poly(vinyl alcohol) (PVA) with poly(acrylic acid) (PAA) were prepared and tested in pervaporation and differential permeation of water–alcohol mixtures. Instead of a decrease of permeation flux as generally observed with most crosslinking agents, an increase in the permeability was observed with PAA crosslinked membranes at low PAA contents. The permeation flux increases with PAA contents in the polymer with no selectivity reduction for membranes containing less than 15 wt. % PAA. The membranes show good performances to water–2-propanol and water–ethanol mixtures, i.e. high fluxes and high selectivities to pure water. The membranes were stable and highly permeable to water. The enhancement of the permeability of PVA can be explained by a reduced crystallinity and an improved diffusivity due to the presence of PAA.  相似文献   

3.
The self-diffusion of water and ethanol for crosslinked and uncrosslinked chitosan membranes have been investigated by pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy. It has been shown that during diffusion processes, water and ethanol are localized in different parts of the chitosan membrane. In the crosslinked membrane, the self-diffusion coefficient for water is higher, but that for ethanol is essentially lower, than those for the uncrosslinked membrane. For this reason, the mobility selectivity is essentially higher in crosslinked membrane as compared to the uncrosslinked. The sorption selectivity are the same for these two types of membranes.  相似文献   

4.
The self-diffesion of water, ethanol and water-ethanol mixtures in chitosan (CS) membranes crosslinked byaqueous H_2SO_4 solution and uncrosslinked membrane was measured using pulsed-field gradient (PFG) nuclear magneticresonance (NMR) spectroscopy to obtain the partial solubilities and self-diffusion coefficients. An attempt was made toexplain the transport properties of water and ethanol through the CS membrane. It was concluded that there are two types ofchannel water and ethanol diffesate transfer. The water was localized in the hydrophilic ionic region formed by the ionizedgroups, and the ethanol was localized in the hydrophobic amorphous network of the polymer. There was a good agreementbetween the separation fastors estimated from PFG-NMR data and those obtained by pervaporation testing.  相似文献   

5.
In the past decades, the layer-by-layer (LBL) adsorption of oppositely charged polyelectrolytes has proven to be a promising method for the preparation of polyelectrolyte multilayer membranes. However, to obtain a good separation capability, LBL adsorption involved relatively long periods because 50–60 bilayers were normally required. The aim of this study was to develop such a new method that would allow simplification of the LBL procedure. LBL adsorption was proposed to proceed under a dynamic condition to prepare polyelectrolyte multilayer membranes. The polyacrylic acid (PAA) and polyethyleneimine (PEI) were alternatively deposited on polyethersulfone (PES) ultrafiltration support membrane under a pressure of 0.1 MPa. The polyelectrolyte multilayer membranes prepared by dynamic LBL process were compared with those prepared by the static LBL process for the pervaporation separation of water–ethanol mixture. The results suggested that a relatively high separation factor could be obtained with only four composite bilayers by using dynamic LBL process. The preparative conditions including bilayer number, filtration time of the first PAA layer, reaction time, ratio between polayanion and polycation concentrations, PAA molecular weight and salt addition were investigated. The pervaporation conditions such as feed temperature and water concentration in the feed were also evaluated. Under the temperature of 40 °C, the separation factor and the permeate flux of the polyelectrolyte multilayer membranes were about 1207 and 140 g/(m2 h), respectively.  相似文献   

6.
采用层层自组装法在改性聚丙烯腈(PAN)膜表面交替沉积聚乙烯亚胺(PEI)和聚丙烯酸-氧化石墨烯(PAA-GO)混合液,制得了单价离子选择性复合膜。X射线衍射(XRD)测试结果表明成功合成了氧化石墨烯(GO)并在复合膜中均匀分散。扫描电镜(SEM)观察结果证实了多层聚电解质PEI/PAA-GO成功地组装在基膜上,并用紫外-可见(UV-Vis)光谱进一步证实了组装过程的均匀性和连续性。接触角和性能测试表明加入GO后,复合膜的亲水性和单价阳离子的选择性明显增大。这种高通量、高选择性的防污复合膜在分离和水的软化方面有很好的应用前景。  相似文献   

7.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

8.
A process for the preparation of new composite membranes via free-radical copolymerization of acrylic acid with a macromolecular crosslinker (allyloxyethylcellulose) on the surface of porous polyethylene films was proposed. To reveal the effect of the porous matrix on the properties of the composites, homogeneous hydrogel membranes based on crosslinked poly(acrylic acid) were studied. The swelling ratio and transport characteristics of the membranes during separation of ethanol-water mixture by pervaporation were determined depending on the ethanol concentration. It was found that all membranes at low ethanol concentrations (0–30 vol %) exhibited high swelling ratios, which drastically decreased in the range 30–40 vol % as a result of gel collapse. The composite membranes had a higher selectivity for water over a broad range of ethanol concentrations than homogeneous membranes, but a lower flux. It was found that the strength and elasticity of porous matrices was retained in the composite membranes, which became mechanically more isotropic owing to the presence of the crosslinked component.  相似文献   

9.
A poly[1-(trimethylsilyl)-1-propyne] membrane was studied in a thermopervaporation process for ethanol recovery from fermentation media. Four commercial composite membranes based on polysiloxanes (Pervap 4060, Pervatech PDMS, PolyAn, and MDK-3) were studied for comparison. The dependences of the permeate flux, permeate concentration, separation factor, and pervaporation separation index on the temperature of the feed mixture (5 wt % ethanol in water) were obtained. The maximal values of the ethanol concentration in the permeate (35 wt %) and separation factor (10.2) were obtained for the poly[1-(trimethylsilyl)-1-propyne] membrane, whereas the PolyAn membrane provided the highest permeate flux (5.4 kg m–2 h–1). The ethanol/ water separation factor for the systems studied has a maximum at 60°С; this temperature of the feed mixture is optimum for recovering ethanol from aqueous media by thermopervaporation. The existing membranes based on polysiloxanes show low ethanol–water selectivity (less than 1). Poly[1-(trimethylsilyl)-1-propyne] membranes are the most promising for recovering bioethanol from fermentation mixtures by thermopervaporation, because they showed the highest selectivity to ethanol.  相似文献   

10.
Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes   总被引:4,自引:0,他引:4  
In this study, barrier membranes were prepared from poly(vinyl alcohol) (PVOH) with different amounts of cellulose nanocrystals (CNXLs) as filler. Poly(acrylic acid) (PAA) was used as a crosslinking agent to provide water resistance to PVOH. The membranes were heat treated at various temperatures to optimize the crosslinking density. Heat treatment at 170 °C for 45 min resulted in membranes with improved water resistance without polymer degradation. Infrared spectroscopy indicated ester bond formation with heat treatment. Mechanical tests showed that membranes with 10% CNXLs/10% PAA/80% PVOH were synergistic and had the highest tensile strength, tensile modulus and toughness of all the membranes studied. Polarized optical microscopy showed agglomeration of CNXLs at filler loadings greater than 10%. Differential thermogravimetric analysis (DTGA) showed a highly synergistic effect with 10% CNXL/10% PAA/80% PVOH and supported the tensile test results.Transport properties were studied, including water vapor transport rate and the transport of trichloroethylene, a representative industrial toxic material. Water vapor transmission indicated that all the membranes allowed moisture to pass. However, moisture transport was reduced by the presence of both CNXLs and PAA crosslinking agent. A standard time lag diffusion test utilizing permeation cups was used to study the chemical barrier properties. The membranes containing ≥10% CNXLs or PAA showed significantly reduced flux compared to the control. The CNXLs were then modified by surface carboxylation in order to better understand the mechanism of transport reduction. While barrier performance improvements were minimal, the chemical modification improved the dispersion of the modified CNXLs which led to improved performance. Of special note was an increase in the initial degradation temperatures of both modified and unmodified systems, with the modified system showing an initial degradation temperature >100 °C higher than the cellulose alone. This may reflect more extensive crosslinking in the modified composite.  相似文献   

11.
Transport properties of cation-exchange membranes have been studied. The self-diffusion coefficients of sodium and chloride ions, the transport numbers of sodium ions and water, and the conductivities were measured in 0.1 M sodium chloride at 25°C. The concentration potentials were determined in the system 0.05/0.15 M sodium chloride.The membranes were prepared by sulphonation of oriented polyethylene (PE) film modified with 30 wt % of styrene—divinylbenzene copolymer (poly(St-co-DVB)). The copolymer was introduced by interpolymerization of the monomers within the film without its dissolution. A sequence of membranes having similar ion-exchange capacity but differing in water content was then obtained from sheets of normal PE/poly(St-co-DVB)SO3Na membranes by expanding them by heating in water followed by a thermal treatment in air.The deviations of the measured transport properties from the behaviour of homogeneous membranes and the analysis of the Kedem—Katchalsky relationships for composite membranes have led to the conclusion that in PE/poly(St-co-DVB)SO3Na membranes a structure prevails with a series arrangement of layers with different properties.  相似文献   

12.
Dispersion polymerization of styrene (S) and vinylbenzyltrimethylammonium chloride (VBA) was conducted in an ethanol‐water medium using an aromatic poly(amic acid) (PAA) as the stabilizer. When equimolar amounts of VBA and the carboxylic acid of PAA were used, monodisperse particles with high PAA content were obtained quantitatively. The imidization of PAA on the particles proceeded with acetic anhydride and N,N‐dimethylaminopyridine to form core‐shell PS‐polyimide particles.  相似文献   

13.
聚乙烯醇-N,N-二甲基-3-氨基-2-羟基丙基醚的季铵化产物(quaternized PVA-N,N-dimethyl-3-amido-2-hydroxy-propyl ether,简称QPVA)与硫酸单酯化聚乙烯醇(sulphate monoesterified polyvinyl alcohol,简称SMPVA)自组装聚离子复合物(self-assembled polyion complex,简称SAPIC),自组装溶液pH=7时,膜在水中的溶胀度最小.SAPIC均质膜在60vol%~90vol%(间隔10%)乙醇中浸泡48h,观察不同浓度乙醇中水在均质膜中的扩散行为.SAPIC均质膜在95%乙醇中浸泡48h,在20~120℃(间隔20℃)下,观察乙醇中水在膜中的汽化行为.应用FTIR技术跟踪两类吸水膜,确认了水和膜内聚离子基的吸收.改变浓度的一维(1D)和二维(2D)FTIR相关分析表明,渗透过程中形成两种状态的水,游离水和缔合水,随乙醇中水的增加游离水优先变化.游离水靠静电作用与膜内聚离子基优先缔合形成缔合水;改变温度的1D-和2D-FTIR显示,汽化过程中也存在两种状态的水,游离水和缔合水,随温度升高游离水优先变化.游离水较缔合水优先挥发,脱离膜与乙醇分离.同时测定了SAPIC复合膜对95%乙醇/水的渗透汽化性能,分离因子870,渗透通量1400g/(m2·h).为SAPIC膜用于乙醇脱水的渗透汽化过程研究提供了一种简便的方法.  相似文献   

14.
制备了聚乙烯醇(PVA)/聚丙烯睛(PAN)渗透汽化复合膜,研究了交联剂用量、底膜结构、进料液组成、操作温度等因素对膜的渗透汽化性能的影响.发现PVA/PAN复合膜对水/醇混合液表现为水优先透过,进料液中乙醇浓度在60~99wt%的范围内,渗透通量Jt与温度之间符合Arrhenius关系,选择分离系数αW/E也随温度上升而增大.进料液为95wt%的乙醇/水混合液时,75℃下Jt高达300~450g/m2h,αW/E为800~1100.对异丙醇/水、异丁醇/水及甘油/水混合体系,复合膜显示出更为优秀的透过、分离性能.就膜的化学、物理结构与其渗透汽化性能间的关系进行了讨论.  相似文献   

15.
Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on...  相似文献   

16.
李继定 《高分子科学》2009,27(4):533-542
Ethanol perm-selective PDMS/PVDF composite membranes were prepared by curing polydimethylsiloxane (PDMS) with various cross-linking reagents,such as tetraethoxylsilane(TEOS),γ-aminopropyltriethoxylsilane(APTEOS), phenyltrimethoxylsilane(PTMOS) and octyltrimethoxylsilane(OTMOS) as well.The cross-linking density and surface properties of the PDMS active layer were adjusted by varying cross-linking reagents.The pervaporation performance of PDMS membranes cured with different cross-linking reagents was inves...  相似文献   

17.
The self-diffusion of water, methanol, ethanol, isopropanol, and butanol in membranes based on polyethylene and sulfonated copolymer of styrene and divinylbenzene (MK-100) and membranes based on sulfo-containing aromatic polyamides (PA) and a copolymer of 1,2,4,5-benzenetetracarboxylic acid with 4,4′-diaminodiphenyl oxide (PAK) was investigated by the pulsed magnetic field gradient NMR technique. In MK-100 sulfo cation-exchange membranes and PAK carboxylic membranes, two types of sorbate molecules with translational mobilities differing by an order of magnitude were observed. It was established that, in these membranes, the major diffusant portion was transferred trough transport channels formed by functional groups of membranes, counterions, and diffusant molecules (ionogenic channels). The conclusion was drawn that, in PA membranes, water and alcohol molecules were distributed uniformly and carbonyl croups of the polymeric matrix participated in the formation of transport channels. Relations between the structure of membranes, the character of diffusant-polymeric matrix interaction, and the translational mobility of sorbate molecules were found.  相似文献   

18.
This paper reports on the preparation and characterization of sulfonated poly(ether ether ketone) (sPEEK)-based mixed matrix membranes. The inorganic matrix consisted of silica: Aerosil®380, tetraethoxysilane (TEOS) or a combination of both to obtain an interconnected silica network. The behavior of these membranes in ethanol–water systems was studied for application in a direct ethanol fuel cell (DEFC). Uptake measurements showed that the converted TEOS content had a strong influence on the hydrophilicity of the membranes. Proton conductivity was strongly related to the water content in the membrane, but the proton diffusion coefficients of membranes with various Aerosil®380–TEOS combinations were similar. Dynamic measurements in liquid–liquid (L–L) and liquid–gas (L–G) systems were performed to study the ethanol transport through the membrane. No reduction in ethanol permeability was obtained in the L–L system, but a remarkable reduction was obtained in the L–G system when 2 M ethanol was applied. The reinforcing characteristic of the combined Aerosil®380–TEOS-system were best observed at 40 °C with 4 M ethanol. The fuel cell performance prediction based on the selectivity of proton diffusion coefficient to ethanol permeability coefficient showed for nearly all composite membranes an improvement with respect to the polymeric reference. The presence of an inorganic phase led to relatively constant proton diffusion coefficients and lower ethanol permeability coefficients in comparison with the polymeric reference.  相似文献   

19.
Nafion/TiO2 composite membranes for different loadings of TiO2 were prepared by casting method for the possible application in direct ethanol fuel cell (DEFC). The properties of the composite membranes were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetric analyser (TGA), ion exchange capacity, water and alcohol uptake, swelling ratio, proton conductivity, and ethanol crossover. The observed characteristics of the membranes were evaluated for DEFC and compared with the direct methanol fuel cell (DMFC) membrane. The analysis reveales a significant influence on the TiO2 surface characteristics, water and alcohol uptake, and swelling of the membrane. The TiO2 composite membranes exhibited a sharp decrease in methanol and ethanol crossover for 5% TiO2 and the proton conductivity was heighest for 1% TiO2 loading. The best compromise between proton conductivity and crossover has been found out with the help of the characteristic factor ϕ. The optimum loading of 5% TiO2 composite membrane has shown the maximum characteristic factor.  相似文献   

20.
This paper describes an improved one-step voltage pulse detachment method by using perchloric acid and ethanol mixture as detaching solution for the preparation of through-hole porous anodic alumina (PAA) membranes. The detachment of PAA from aluminum substrate and the dissolution of the barrier layer can be completed simultaneously in the detachment solution by applying a pulse voltage in situ after the anodization process. The influence of voltage pulse height and nature of the detachment solution on the efficiency of detachment have been systematically investigated. The present procedure is more environmental friendly and efficient as compared to the conventional electrochemical detachment methods and is promising for the preparation of freestanding PAA films with through-hole morphology which are important for nanomaterials synthesis and nanoscale separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号