首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 This paper has dealt with direct contact heat and mass transfer characteristics of air bubbles in a hot water layer. The experiments were carried out by bubbling air in the hot water layer under some experimental conditions of air flow rate, inlet air temperature and humidity as a dispersion fluid, and hot water temperature and hot water layer depth as a continuous fluid. Heat transfer and evaporation of water vapor from hot water to air bubbles occurred during air bubbles ascending into the hot water. Air bubble flow patterns were classified into three regions of independent air bubble flow, transition and air bubble combination growth. Non-dimensional correlation equations of direct contact heat and mass transfer between air bubbles and hot water were derived by some non- dimensional parameters for three regions of bubble flow pattern. Received on 14 July 2000 / Published online: 29 November 2001  相似文献   

2.
It is a well known effect that accumulation of non condensable gas causes a high heat transfer resistance during direct contact condensation in binary steam- nitrogen mixtures. But especially with high pressures and low water temperatures a second effect reduces heat transfer additionally. Fog forms within in the steam-nitrogen boundary layer and the steam condenses at the water droplets of the fog layer and reaches the cooling water interface no longer. The convective mass transfer to the cooling water interface diminishes and no heating up of the water layer takes place. This effect was observed with experiments at stratified two phase flow run with pressures up to 2.0 MPa. The interface temperature has proved to be the most important parameter for fog formation. The paper explains this effect by means of film theory. It offers correlations to quantify the effect and to calculate the minimum interface temperature to avoid spontaneous condensation. Received on 29 May 1998  相似文献   

3.
The present experimental study investigates the controlling mechanism involved in a new combined vertical film-type absorber-evaporator exchanger operating near the condition of the triple point of water. This peculiar exchanger plays the most important role in the VFVPE process that can be utilized in many industrial applications, water pollution prevention, desalination, and purification of chemicals, for example. The method of analogy of the heat and mass transfer near the film surface is used to calculate the interfacial concentration and temperature, and thus determining the heat and mass transfer coefficients. It is shown that the working temperature level has the negligible effect on the characteristics of the mass transfer. The mass transfer coefficients are higher than those obtained in the case of isothermal absorption due to the convective effect arisen from vapor absorption in the falling solution film. The water flow rate in the evaporator side has a minor effect on the performance of this combined exchanger. The overall mean heat transfer coefficient remains nearly constant in the lower range of the solution flow rate of the absorber; however, it would increase with increasing solution flow rate in the higher range. The correlating equations for both the heat and mass transfer coefficients are suggested.  相似文献   

4.
This paper experimentally investigates the thermal performance and the pressure drop of an encapsulated thermal storage tank during the charging process. A polyvinyl chloride (PVC) hollow cylinder is used as the thermal storage tank. The cylindrical capsules inside the thermal storage tank utilize water added with nucleation agents as the phase change material (PCM), and the coolant is the aqueous solution of ethylene glycol. A series of experiments were carried out to investigate the effects of the inlet coolant temperature and coolant flow rate on nucleation of capsules, heat transfer and pressure drop of the tank. The results indicate that cool energy can be fully stored in the form of latent heat when the inlet coolant temperature is set below the temperature with 100% nucleation probability. The lower the inlet coolant temperature and the larger the coolant flow rate, the more efficient the storage tank. A correlation for the pressure drop of coolant during a charging process is also developed.  相似文献   

5.
The mutual effect between heat and mass transfer is investigated for wood dried at high temperature. A numerical model of coupled heat and mass transfer under the effect of the pressure gradient is presented. Based on the macroscopic viewpoint of continuum mechanics, the mathematical model with three independent variables (temperature, moisture content and gas pressure) is constructed. Mass transfer in the pores involves a diffusional flow driven by the gradient of moisture content, convectional flow of gaseous mixture governed by the gradient of gas pressure, the Soret effect and phase change of water. Energy gain or loss due to phase change of water is taken as the heat source. Numerical methods, the finite element method and the finite difference method are used to discretize the spatial and time dimension, respectively. A direct iteration method to solve the nonlinear problem without direct evaluation of the tangential matrix is introduced. The local convergence condition based on the contraction–mapping principle is discussed. The mathematical model is applied to a 3-D wood board dried at high temperature with the Neumann boundary conditions for both temperature and moisture content, and the Dirichlet boundary conditions for gas pressure.  相似文献   

6.
Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80–125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.  相似文献   

7.
The heat and mass transfer in an unsaturated wet cylindrical porous bed packed with quartz particles was investigated theoretically for relatively low convective drying rates. Local thermodynamic equilibrium was assumed in the mathematical model describing the multi-phase flow in the unsaturated porous media using the energy and mass conservation equations to describe the heat and mass transfer during the drying. The drying model included convection and capillary transport of the free water, diffusion of bound water, and convection and diffusion of the gas. The numerical results indicated that the drying process could be divided into three periods, the temperature rise period, the constant drying rate period and the decreasing drying rate period. The numerical results agreed well with the experimental data verifying that the mathematical model can evaluate the drying performance of porous media for low drying rates. The effects of drying conditions such as the ambient temperature, the relative humidity, and the velocity of the drying air, on the drying process were evaluated by numerical solution.  相似文献   

8.
The purpose of this paper is to provide a database suitable for the validation of computer codes for condenser design purposes. It is too extensive to publish in full but copies of all data tables are available direct from the author. The test condenser is of industrial scale, (0.483 m diameter and 2.438 m between tubeplates), and design, (TEMA E), and should therefore be of particular relevance for this purpose. The important condition that all the individual resistances to heat and mass transfer should be controlling in some part of the dataset is fulfilled, by covering condensation of steam and steam–air mixtures, methanol and isopropanol and their mixtures with water, and hydrocarbon mixtures, commercial hexane and methylcyclohexane-toluene. Care is taken to ensure that the condenser is operating in a loaded condition with an appreciable vent flow to a knockout condenser. Data are reported at atmospheric pressure and at reduced pressures down to approximately 0.1 bar. Further the work includes measurements of the pressure and temperature profiles not only in condensation but with single-phase flow of air and two-phase flow of air–water mixtures in the stratified and spray flow regimes. The data have been analysed by standard methods available in the literature and specific conclusions are reached with respect to the performance of these methods. A particular feature is the application of rigorous models to predict multicomponent mass transfer. Care has been taken to describe the measurement techniques, their reliability and that of the dataset itself in consequence. The conclusions of the work are related to current industrial design practice and some needs for modification of current design methods are noted.  相似文献   

9.
The graphical method to determine with the aid of a Mollier i - x diagram (psychrometric chart) combined heat and mass transfer is simulated by a computer program. Heat rejection rates from a plate-fin tube type condenser are determined for various flow rates and inlet state conditions of air and for different degrees of wetting of the heat transfer surfaces. The presence of water and the cooling by latent heat makes it possible to exchange more heat than the unwetted exchanger would even for idealized conditions of infinite heat transfer coefficient of the air. The evaporative cooled condenser also can exchange heat with ambient air which has much higher temperature than the condensing fluid. Evaporative cooling increases heat transfer by a factor of more than three for saturated inlet air and greater than five for lower inlet humidities. Wetted heat exchangers require less extended surfaces and can operate effectively with bare tubes only. Wetting the condenser of a refrigeration or heat pump system makes it possible to exchange the condenser load at lower temperatures. This yields an increase of COP of the order of 30 to 60% and therefore a substantial decrease in compressor power and its energy consumption.  相似文献   

10.
This paper presents a general differential mathematical model to analyze the simultaneous heat and mass transfer processes that occur in different components of an ammonia–water absorption system: absorber, desorber, rectifier, distillation column, condenser and evaporator. Heat and mass transfer equations are considered, taking into account the heat and mass transfer resistances in the liquid and vapour phases. The model considers the different regions: vapour phase, liquid phase and an external heating or cooling medium. A finite difference numerical method has been considered to solve the resulting set of nonlinear differential equations and an iterative algorithm is proposed for its solution. A map of possible solutions of the mass transferred composition z is presented when varying the interface temperature, which enables to establish a robust implementation code. The analysis is focused on the processes presented in ammonia–water absorption systems. The model is applied to analyze the ammonia purification process in an adiabatic packed rectification column and the numerical results show good agreement with experimental data.  相似文献   

11.
Experimental and numerical results are presented from investigations into the hydrodynamics of a bench scale bubble column reactor. Countercurrent bubble column reactors are most commonly used in water disinfection for effecting mass transfer of ozone to the aqueous phase. In the reactor column used in this study, gas is introduced at the bottom of the column via a spherical diffuser and water is introduced to the top of the column through a manifold packed with glass spheres. Residence time distribution (RTD) studies were conducted for a range of gas flow rates chosen to span the dispersed flow bubble regime. A multiphase computational fluid dynamics (CFD) model was used to simulate the flow in the bubble column and to gain insights into the fluid dynamics of countercurrent flow bubble columns. The CFD model accurately predicted trends in mixing. Use of CFD in bubble column design and scale-up thus may yield better designs than those based on empirical relations.  相似文献   

12.
A study of direct contact condensation of stagnant saturated and superheated steam on slowly moving subcooled water has been performed with reference to a horizontal flat geometry. Inlet water mass flowrate and temperature together with inlet steam temperature and superheating have been investigated as experimental variables. Their influence on direct contact condensation heat transfer coefficient is shown. A theoretical model for direct contact condensation prediction is proposed, in the frame of the present geometry.  相似文献   

13.
多孔介质干燥导致热质耦合传输过程。本文基于连续介质力学的宏观尺度,对多孔介质的热、湿和气三者耦合迁移进行数值模拟,研究压力梯度对热质传输的影响。多孔介质传质机理主要为水汽和空气的对流和扩散传输、吸附水在含湿量梯度作用下的自由扩散和其在温度梯度即Soret效应驱动下的流动。采用Galerkin加权余量的有限元方法,提出了...  相似文献   

14.
The ability to accurately predict droplet entrainment in annular two-phase flow is required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. Most annular flow entrainment models in the open literature are formulated in terms of dimensionless groups, which do not directly account for interfacial instabilities. However, many researchers agree that there is a clear presence of interfacial instability phenomena having a direct impact on droplet entrainment. The present study proposes a model for droplet entrainment, based on the underlying physics of droplet entrainment from upward co-current annular film flow that is characteristic to light water reactor safety analysis. The model is developed based on a force balance and stability analysis that can be implemented into a transient three-field (continuous liquid, droplet, and vapor) two-phase heat transfer and fluid flow systems analysis computer code.  相似文献   

15.
Transient operation of a co-current heat exchanger is analyzed in this paper, using a new predictive formulation for laminar and turbulent flows with mass discharge from the heat exchanger. The model includes time-varying mass discharge due to pressure regulated gas outflow. The temperature variations of the working fluid, heating fluid and the wall are predicted and validated against past data. It is found that the temperature of the working fluid rises sharply to a peak and then gradually decreases over time, due to mass discharge effects. The wall temperature decreases exponentially, and the temperature of the heating fluid falls sharply, and then gradually decreases. A benchmark case of a step change in the mass flow rate of the incoming fluid is analyzed and compared against past data for validation, after which results are presented and discussed for transient step changes of the incoming mass flow rate.  相似文献   

16.
A liquid film falling between horizontal tubes is known to take the form of droplets, jets or sheets, depending on the liquid flow rate; the form of the flow is the so-called “falling-film mode”. Although previously neglected in studies of mode transition, a countercurrent gas flow often exists in falling-film heat exchangers, and its effect on the liquid flow might be important: it could impact the flow regime, lead to local “dryout,” and decrease the heat transfer rate. Experiments are conducted to explore the effects of a countercurrent gas flow and liquid feeding length on falling-film mode transitions for a liquid flowing over horizontal tubes. The effects on mode transition are shown to depend on fluid properties and are explained in terms of unsteadiness and film thickness. In general, transition hysteresis is reduced with an increasing gas velocity. A correlation is developed to predict the countercurrent gas flow effects on falling-film mode transitions. The liquid feeding length can affect mode transitions in quiescent surroundings and when a countercurrent gas flow imposed.  相似文献   

17.
This paper presents a mathematical model and analytical solutions of the problem of the growth of a hydrate layer during contact of gas and water for two limiting regimes of gas hydrate formation determined by mass transfer and heat transfer. Critical values are obtained for thermal parameters and parameters that determine the flow properties of the hydrate layer (diffusion coefficient and permeability), on which the hydrate formation regime depends.  相似文献   

18.
Contact condensers exhibit high heat transfer rates, compactness, absence of scale and can be operated even at very low temperature driving forces. A technique successfully utilized earlier by the authors to predict the condensation rate — and height — of a single bubble train, is extended here to predict the condenser height in counter and co-current multi-bubble systems. This approach makes it possible to distinguish the effect of the bubbles' spatial density, i.e. effects of bubble frequency and horizontal spacing.  相似文献   

19.
Direct contact heat transfer between water and a heat transfer oil was investigated under non-boiling conditions in co-current turbulent flow through a horizontal concentric annulus. The ratio of the inner pipe diameter to the outer pipe diameter (aspect ratio) κ = 0.730−0.816; total liquid velocity (mixture velocity) VT = 0.42−1.1 m/s; inlet oil temperature Toi = 38−94°C; oil volume fraction in the flowing mixture φo = 0.25−0.75 were varied and their effects on the overall volumetric heat transfer coefficient Uv were determined at constant interfacial tension of 48 dynes/cm.

It was found that, in each concentric pipe set, the overall volumetric heat transfer coefficient increased with increasing dispersed phase volume fraction at each constant mixture velocity and reached a maximum at around φo = φw ≈ 0.5. The maximum Uv values increased with increasing total liquid velocity and decreasing aspect ratio of the annulus. The volumetric heat transfer coefficient was also found to increase with increasing inlet oil temperature and increasing total liquid velocity but to decrease with length along the test section keeping all other parameters constant. Empirical expressions for the volumetric heat transfer coefficient were obtained within the ranges of the experimental parameters.  相似文献   


20.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号