共查询到20条相似文献,搜索用时 15 毫秒
1.
The studies on the concentration of total nitrogen, phosphorus, sulphur, chlorine, iodine and boron as well as on the thermal
decomposition of commercial raw plant materials used in medicine were performed. The 50 independent samples of herbs originating
from 25 medicinal plant species collected in 1986–92 were analysed. The content of non-metallic elements was determined spectrophotometrically
after previous mineralization of plant sample. The thermal decomposition was performed using the derivatograph with the application
of 100 mg samples and heating rate of 5°C min−1. In order to obtain more clear classification of the analysed plant materials principal component analysis (PCA) was applied.
Interpretation of PCA results for two databases (non-metals and thermoanalytical data sets) allows to state, that samples
of herbs from the same plant species in majority of cases are characterized by similar elemental composition and similar course
of their thermal decomposition. In this way the differences in general chemical composition of medicinal plants raw materials
can be determined.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
2.
M. Wesołowski P. Konieczyński B. Ulewicz 《Journal of Thermal Analysis and Calorimetry》2000,60(1):299-304
Studies on the thermal decomposition and on the elemental composition of commercial raw plant materials used in medicine were
performed. 16independent samples of fruits originating from 12 medicinal plant species collected in1988–92 were analysed.
The thermal decomposition was performed using the derivatograph. The content of non-metallic (N, P, S, Cl, I and B) and metallic
(Ca, Mg, Fe, Mn, Cu and Zn)elements was determined by spectrophotometric techniques after previous mineralization of sample.
In order to obtain more clear classification of the analysed plant materials principal component analysis was applied. The
interpretation of PCA results for three databases (thermoanalytical, non-metals and metals data sets) allows to state, that
samples of fruits from the same plant species in the majority of cases are characterized by similar elemental composition
and similar course of their thermal decomposition. In this way the differences in general chemical composition of medicinal
plants raw materials can be determined.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
3.
基于理化指标及主成分分析的葵花籽油品质综合评价指标的建立 总被引:1,自引:0,他引:1
研究了105℃和180℃氧化条件下葵花籽油理化指标(过氧化值、共轭二、三烯、茴香胺值、酸价、碘值和极性化合物)的变化规律,就理化指标对油脂总体品质变化的贡献度进行了主成分分析,建立了可有效表征葵花籽油在相应条件下品质变化的综合评价指标。结果表明:随着氧化时间的延长、温度的升高,共轭二、三烯、茴香胺值、酸价和极性化合物的升高趋于显著(P≤0.05),而碘值则均呈下降趋势;通过对各理化指标的总体变化率以及与油脂不饱和度和常用理化指标的相关性分析,发现过氧化值、共轭二烯、茴香胺值(105℃)或共轭二烯、茴香胺值、极性化合物(180℃)可有效表征葵花籽油的品质变化;成功建立了评判葵花籽油品质变化的综合指标,并确定其临界值分别为-0.189(105℃)和0.727(180℃);此外,可通过对共轭二烯和茴香胺值的主成分分析有效区分在105℃或180℃下氧化葵花籽油的品质变化。 相似文献
4.
对产自云南的5种抗HIV活性中草药:臭灵丹、紫茎泽兰、辣子草、滇石栎、密蒙花进行了微量元素测定和主成分分析.结果显示,微量元素分为3个主分量,综合评价第一位的是臭灵丹. 相似文献
5.
基于浓度参量同步荧光光谱技术,对不同溢油类型不同油源原油样品集、引入外扰相似油源样品集进行光谱数据采集,获取其浓度同步荧光光谱矩阵Concentration-Synchronous-Matrix-Fluorescence(CSMF),利用主成分分析方法对两套不同层次的原油相关样品集进行了多类分类识别。结果表明:主成分载荷图可以很好地反映各个原油相关样品在油源上的相似程度,结合支持向量机可以实现不同溢油类型及不同油源原油的准确分类,对于引入风化和海水外扰相似油源溢油样品集,两类分类区分的结果远远高于多类分类识别的结果。通过详细的主成分分析讨论,为溢油油种鉴别提供了一种利用多类分类识别,逐步缩减嫌疑样本数量,最后通过两两分类实现溢油样品准确识别的新思路。 相似文献
6.
7.
建立了一种基于不相交主成分分析(Disjoint PCA)和遗传算法(GA)的特征变量选择方法, 并用于从基因表达谱(Gene expression profiles)数据中识别差异表达的基因. 在该方法中, 用不相交主成分分析评估基因组在区分两类不同样品时的区分能力; 用GA寻找区分能力最强的基因组; 所识别基因的偶然相关性用统计方法评估. 由于该方法考虑了基因间的协同作用更接近于基因的生物过程, 从而使所识别的基因具有更好的差异表达能力. 将该方法应用于肝细胞癌(HCC)样品的基因芯片数据分析, 结果表明, 所识别的基因具有较强的区分能力, 优于常用的基因芯片显著性分析(Significance analysis of microarrays, SAM)方法. 相似文献
8.
为了实现扫描仪在不同光源、不同观察者条件下准确获取颜色信息,最大程度的避免同色异谱现象,本文采用光谱的方法对扫描仪进行特性化处理,通过多项式回归和BP神经网络分别与主成分分析法结合,首先对检测样本的光谱反射率进行主成分分析,提取主成分与主成分系数,通过实验得到主成分系数与多项式回归、BP神经网络结构之间的转换模型,实现了扫描仪低维RGB信号对原始光谱反射率信息的重构,进而实现扫描仪的光谱特性化.实验结果表明,多项式项数为19项时,达到训练样本的均方根误差为1.7%,检测样本的均方根误差为1.9%.而包含15个隐层节点的单隐层BP神经网络结构为比较合理的网络结构,达到训练样本的均方根误差为1.3%,检测样本的均方根误差为1.5%.对彩色扫描仪的特征化处理,采用多项式回归法得到光谱特性化精度较低,采用BP神经网络模型能够实现更高的光谱特性化精度. 相似文献
9.
采用能量色散X射线散射(EDXRS)技术探测了8种液体易制毒化学品的X射线散射光谱, 结果显示液体易制毒物质具有各自特征的EDXRS散射图谱. 将液体易制毒化学品的EDXRS散射信息与主成分分析结合, 发现前2个主成分可以表达X射线散射光谱的主要信息, 在PC1~PC2得分分布图上可将液体易制毒化学品进行分类. 研究结果表明, EDXRS光谱技术结合主成分分析法可以实现探测、 鉴别分类液体易制毒化学品, 为隐藏液体易制毒化学品的监管控制提供一个可行的鉴别方法. 相似文献
10.
The thermal decomposition of theophylline, theobromine, caffeine, diprophylline and aminophylline were evaluated by calorimetrical,
thermoanalytical and computational methods. Calorimetrical studies have been performed with aid of a heat flux Mettler Toledo
DSC system. 10 mg samples were encapsulated in a 40 μL flat-bottomed aluminium pans. Measurements in the temperature range
form 20 to 400°C were carried out at a heating rate of 10 and 20°C min−1 under an air stream. It has been established that the values of melting points, heat of transitions and enthalpy for methylxanthines
under study varied with the increasing of heating rate.
Thermoanalytical studies have been followed by using of a derivatograph. 50, 100 and 200 mg samples of the studied compounds
were heated in a static air atmosphere at a heating rate of 3, 5, 10 and 15°C min−1 up to the final temperature of 800°C. By DTA, TG and DTG methods the influence of heating rate and sample size on thermal
destruction of the studied methylxanthines has been determined. For chemometric evaluation of thermoanalytical results the
principal component analysis (PCA) was applied. This method revealed that first of all the heating rate influences on the
results of thermal decomposition. The most advantageous results can be obtained taking into account sample masses and heating
rates located in the central part of the two-dimensional PCA graph. As a result, similar data could be obtained for 100 mg
samples heated at 10°C·min−1 and for 200 mg samples heated at 5°C min−1. 相似文献
11.
建立了表面增强拉曼/主成分分析快速筛查食品接触材料中4种多环芳烃的分析方法。采用纳米银溶胶作为增强基底,碘化钾为絮凝剂,实现了4种多环芳烃(芘、荧蒽、苯并[b]荧蒽、苯并[k]荧蒽)的表面增强拉曼分析。针对食品接触材料中4种多环芳烃拉曼谱峰重叠难以鉴别区分的问题,采用主成分分析法分别对同浓度多环芳烃、不同浓度多环芳烃以及多环芳烃混合样品进行分析。结果表明,4种多环芳烃均可得到较好的鉴别。该方法成功用于食品接触材料迁移液中4种多环芳烃的快速筛查。 相似文献
12.
A combination of ^1H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA) has shown the potential for being a useful method for classification of type, production origin or geographic origin of wines. In this preliminary study, twenty-one bottled wines were classified/separated for their location of production in Shacheng, Changli and Yantai, and the types of the blended, medium dry, dry white and dry red wines, using the NMR-PCA method. The wines were produced by three subsidiary companies of an enterprise according to the same national standard. The separation was believed to be mainly due to the fermentation process for different wines and environmental variations, such as local climate, soil, underground water, sunlight and rainfall. The major chemicals associated with the separation were identified. 相似文献
13.
采用LKB-2277生物活性检测系统, 测定了37 ℃时白色念珠菌在巴马汀作用下生长代谢的热谱曲线, 并获得9个相应的定量热动力学参数, 经主成分分析综合评价巴马汀的抗白色念珠菌作用. 结果表明巴马汀的抗白色念珠菌作用主要受热谱曲线第二指数生长期的生长速率常数k2和最大产热功率 的影响, 通过分析这两个主要参数的数值变化, 能更方便、快捷和准确地评价巴马汀的抗白色念珠菌作用, 为进一步评价其它药物和化合物的抗菌作用提供了有用的方法和基础. 相似文献
14.
Chinese herbal medicine has attracted increasing attention because of the unique and significant efficacy in various diseases. In this paper, three types of Chinese herbal medicine, the roots of Angelica pubescens, Codonopsis pilosula, and Ligusticum wallichii with different places of origin or parts, are analyzed and identified using laser-induced breakdown spectroscopy (LIBS) combined with principal component analysis (PCA) and artificial neural network (ANN). The study of the roots of A. pubescens was performed. The score matrix is obtained by principal component analysis, and the backpropagation artificial neural network (BP-ANN) model is established to identify the origin of the medicine based on LIBS spectroscopy of the roots of A. pubescens with three places of origin. The results show that the average classification accuracy is 99.89%, which exhibits better prediction of classification than linear discriminant analysis or support vector machine learning methods. To verify the effectiveness of PCA combined with the BP-ANN model, this method is used to identify the origin of C. pilosula. Meanwhile, the root and stem of L. wallichii are analyzed by the same method to distinguish the medicinal materials accurately. The recognition rate of C. pilosula is 95.83%, and that of L. wallichii is 99.85%. The results present that LIBS combined with PCA and BP-ANN is a useful tool for identification of Chinese herbal medicine and is expected to achieve automatic real-time, fast, and powerful measurements. 相似文献
15.
《Analytical letters》2012,45(2):301-307
Based on near-infrared diffuse reflection spectroscopy, multivariate calibration models for discarded automobile plastic were constructed using principal component analysis and clustering analysis to rapidly characterize four widely employed materials: polypropylene, polyethylene, acrylonitrile butadiene styrene, and polymethylmethacrylate with an accuracy rate of 97%. The method was shown to rapidly discriminate waste automobile plastic. 相似文献
16.
昆明西山植物微量元素主成分分析 总被引:7,自引:2,他引:5
用主成分软件分析昆明西山植物微量元素含量特征,元素Mn,Pb,Ni含量的累计贡献率达84%,从而建立了以Mn,Pb,Ni为主导的三个主成分方程。 相似文献
17.
18.
基于主成分分析和小波神经网络的近红外多组分建模研究 总被引:5,自引:0,他引:5
将小麦叶片原始光谱经过预处理后,采用主成分分析(PCA)对数据进行降维,取前3个主成分输入小波神经网络,建立了基于主成分分析和小波神经网络的近红外多组分预测模型(WNN);进一步研究了小波基函数个数的选取(WNN隐层节点数)对小波神经网络模型性能的影响,并将WNN模型与偏最小二乘法(PLS)和传统的反向传播神经网络(BPNN)模型进行了比较.结果表明,所建立的WNN模型能用于同时预测小麦叶片全氮和可溶性总糖两种组分含量,其预测均方根误差(RMSEP)分别为0.101%和0.089%,预测相关系数(R)分别为0.980和0.967.另外,在收敛速度和预测精度上,WNN模型明显优于BPNN和PLS模型,从而为将小波神经网络用于近红外光谱的多组分定量分析奠定了基础. 相似文献
19.
主成分分析用于浙贝母中无机元素含量的研究 总被引:1,自引:1,他引:1
采用原子吸收光谱(AAS)法测定了10个浙贝母样品中12种无机元素的含量,建立浙贝母无机元素指纹图谱,并用SPSS13.0方差分析和主成分分析对浙贝母中的微量元素进行了分析。结果表明,浙贝母的特征无机元素是Cd,Cu,Pb,Mg,Cr,Fe,Zn。可见主成分分析法是浙贝母无机元素分析的有效方法。 相似文献
20.
为实现山楂叶产地的快速判别,提出一种基于稀疏主成分分析特征选择(SPCAFS)与支持向量机(SVM)建模的定性分析方法。采用近红外积分球漫反射光谱法采集6个产地共41批山楂叶123份样品的近红外光谱图,经数据预处理后,通过SPCAFS对代表性特征波段进行选择,并采用SVM建立山楂叶近红外产地判别模型。模型与连续投影(SPA),正则化自表示(RSR)和稀疏子空间聚类(SSC)3种特征选择算法进行对比,以准确率、精确度和灵敏度作为评价标准,评估所提模型的预测性能。结果显示,SPCAFS的特征波段数相比于全波长建模从1 500减少到21,预测结果的准确率和精确度分别从78%、76%提升至97%、100%。同时,相比于SPA、RSR、SSC算法,准确率分别提升了6%、3%、3%,精确度分别提升了13%、10%、5%,模型的预测能力得到显著提升,基于SPCAFS的SVM判别模型可实现山楂叶南北产地的快速判别。 相似文献