首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a GC/NICI-MS assay and a LC/ESI-MS/MS assay for the analysis of N-acetylcysteine (NAC) conjugates of (E)-2,4-diene VPA (NAC I and NAC II) identified in humans. The assay also includes the analysis of the NAC conjugate of 4,5-epoxy VPA (NAC III), an identified metabolite in rats treated with 4-ene VPA for its use in metabolic studies in animals. The highly sensitive GC/MS assay was designed to monitor selectively the diagnostic and most abundant [M - 181](-) fragment anion of the di-PFB derivatives of NAC I, NAC II, and NAC IV, the internal standard (IS) and the PFB derivative of NAC III. The higher selectivity of LC/MS/MS methodology was the basis for an assay which could identify and quantitate the underivatized conjugates simultaneously using MRM of the diagnostic ions m/z 130 and 123 arising from the CID of their protonated molecular ions [MH](+). The GC/MS assay employed liquid-liquid extraction whereas the LC/MS/MS assay used a solid-phase extraction procedure. Linearity ranges of the calibration curves were 0.10-5.0microg ml(-1) by GC/MS and 0.10-1.0microg ml(-1) by LC/MS/MS for NAC I, NAC II and NAC III (r(2) = 0.999 or better). Both assays were validated for NAC I and NAC II and provided good inter- and intra-assay precision and accuracy for NAC I and NAC II. The LOQ by LC/MS/MS was 0.1microg ml(-1), representing 1 ng of NAC I and NAC II. The same LOQ (0.1microg ml(-1)) was observed by GC/MS and was equivalent to 100 pg of each metabolite. NAC III was detected at concentrations as low as 0.01 microg ml(-1) by both methods. The total urinary excretion of the NAC conjugates in four patients on VPA therapy was determined to be 0.004-0.088% of a VPA dose by GC/MS and 0.004-0. 109% of a VPA dose by LC/MS/MS.  相似文献   

2.
The catalytic reaction of chorismate mutase (CM) has been the subject of major current attention. Nevertheless, the origin of the catalytic power of CM remains an open question. In particular, it has not been clear whether the enzyme works by providing electrostatic transition state stabilization (TSS), by applying steric strain, or by populating near attack conformation (NAC). The present work explores this issue by a systematic quantitative analysis. The overall catalytic effect is reproduced by the empirical valence bond (EVB) method. In addition, the binding free energy of the ground state and the transition state is evaluated, demonstrating that the enzyme works by TSS. Furthermore, the evaluation of the electrostatic contribution to the reduction of the activation energy establishes that the TSS results from electrostatic effects. It is also found that the apparent NAC effect is not the reason for the catalytic effect but the result of the TSS. It is concluded that in CM as in other enzymes the key catalytic effect is electrostatic TSS. However, since the charge distribution of the transition state and the reactant state is similar, the stabilization of the transition state leads to reduction in the distance between the reacting atoms in the reactant state.  相似文献   

3.
The incidence of skin cancer is increasing rapidly, particularly in the Caucasian population. Epidemiological and experimental studies demonstrated that ultraviolet radiation (UVR) is the primary cause for the increasing incidence of skin cancer. It is well known that UV irradiation induces DNA damage. If the damage is not repaired or removed in time, it can lead to mutations and skin carcinogenesis. N-acetylcysteine (NAC) has been shown to be an effective protector against UVB-induced immunosuppression and to modulate the expression of some oncogenes and tumor suppressor genes. To test further the protective effect of NAC against UVR, we used both in vitro and in vivo models to investigate the effect of NAC on UVB-induced apoptosis and repair of DNA damage in human and mouse keratinocytes. Our data indicate that the intracellular glutathione level was increased after treatment with NAC at 10-20 mM but decreased with 40 mM NAC treatment due to the toxicity. At concentrations up to 20 mM NAC did not have a significant effect on UVB-induced apoptosis of cultured human keratinocytes. In addition, in an in vivo mouse model, topical application of NAC (3 mumol cm-2) that has been shown to inhibit UVB-induced immunosuppression did not have any effect on UVB-induced apoptosis and did not reduce the formation or enhance the repair of UVB-induced cyclobutane pyrimidine dimers and (6-4) photoproducts. Our results indicate that NAC is ineffective in preserving the genomic stability of keratinocytes against UVB irradiation.  相似文献   

4.
Abstract— A recent study has shown that N-acetylcysteine (NAC) not only has sun-protective properties but also inhibits the UVB-induced suppression of contact hypersensitivity (CHS) in mice. Because NAC does not absorb any UVA (320-400 nm radiation) or UVB (290-320 nm radiation) we have studied the underlying mechanism of protection. Irradiation of solutions of plasmid DNA with UVC (200-290 nm radiation) (10 J m-2) resulted in the formation of cyclobutane pyrimidine dimers, but the extent to which this occurred was not affected by the presence of NAC as was determined by an in vitro T4 endonuclease assay. N-acetylcysteine proved not to have any effect on the photoisomerization of trans-urocanic acid (UCA) to its cis-form in vitro; at equilibrium, approximately 55% cis-UCA was formed. The same percentage was also found in vivo on exposure of mice to UVB (15 kj m-2). Topical application of NAC 30 min prior to irradiation did not have any influence as well on the photoisomerization of trans- to cis-UCA. These in vivo experiments were performed under the same conditions used previously to show the protective effect of NAC against UVB-induced suppression of CHS.
We conclude that this protection of NAC is at least partly based on interference in the role of cis -UCA in UVB-induced suppression of CHS. This conclusion is supported by the observation that NAC completely inhibits the suppression of CHS by cis -UCA administered to mice that were always kept in the dark. In the same range of doses as used in the present study, it was shown in our previous study that NAC alone does not affect the CHS response.  相似文献   

5.
N-acetylcysteine (NAC) is a recognized antioxidant in culture studies and treatments for oxidative stress-related diseases, but in some cases, NAC is a pro-oxidant. To study the effect of NAC on cell proliferation in the presence or absence of ROS stress, we used the stable ROS generator gallic acid (GA) to treat CL1-0 lung cancer cell models with different antioxidant activities. Different antioxidant activities were achieved through the ectopic expression of different PERP-428 single nucleotide polymorphisms. GA increased ROS levels in CL1-0/PERP-428C cells and caused cell death but had no effect on CL1-0/PERP-428G cells within 24 h. We found that 0.1 mM NAC eliminated GA-induced growth inhibition, but 0.5 mM NAC enhanced GA-induced CL1-0/PERP-428C cell death. However, in the absence of GA, NAC exceeding 2 mM inhibited the growth of CL1-0/PERP-428G cells more significantly than that of CL1-0/PERP-428C cells. Without GA, NAC has an antioxidant effect. Under GA-induced ROS stress, NAC may have pro-oxidant effects. Each cell type has a unique range of ROS levels for survival. The levels of ROS in the cell determines the sensitivity of the cell to an antioxidant or pro-oxidant. Cells with different antioxidant capacities were used to show that the intracellular ROS level affects NAC function and provides valuable information for the adjuvant clinical application of NAC.  相似文献   

6.
A peptide fragment of a non-amyloid-beta component (NAC(1-13)) was studied by CD and electron microscopy. Typical amyloid fibrils were observed by EM in a solution of NAC(1-13). In addition to the beta-structural CD band in the far-UV region, a novel CD band near 285 nm was observed in a peptide solution of NAC(1-13). Taking the NAC(1-13) to contain neither an aromatic amino acid residue nor cystine into account, the CD band can be attributed to amyloid fibrils of NAC(1-13).  相似文献   

7.
We describe a new method using flow-injection analysis with spectro-photometric detection, suitable for the determination of N-acetyl-L-cysteine (NAC). The proposed method is appropriate for the determination of NAC in reaction with Pd(2+) ions in the concentration range from 1.0 × 10(-5) mol L(-1) to 6.0 × 10(-5) mol L(-1). The detection limit NAC was 5.84 × 10(-6) mol L(-1) and the recorded relative standard deviation of the method is in the range from 1.67 to 4.11%. NAC and Pd(2+) form complexes of Pd(2+):NAC molar ratios of 1:1 and 1:2, depending on the ratio of their analytical concentrations. The cumulative conditional stability constant for the Pd(NAC)(2)(2+) complex is β(12)' = 2.69 × 10(9) L(2) mol(-2). The proposed method was compared with the classic spectrophotometric determination of NAC, using the same reagent, PdCl(2), and had shown certain advantages: a) shorter analysis time; b) the use of smaller volumes of sample and reagents, which make the proposed method cheaper and faster for NAC determination in real samples without sample pretreatment.  相似文献   

8.
Reactive oxygen species (ROS) are involved in the oxidative damage of the cyanobacterium Anabaena sp. caused by UV-B (280-315 nm) radiation. UV-B-induced overproduction of ROS as well as the oxidative stress was detected in vivo by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Thiobarbituric acid reactive substances (TBARS) and fluorometric analysis of DNA unwinding (FADU) methods were adapted to measure lipid peroxidation and DNA strand breaks in Anabaena sp. Moderate UV-B radiation causes an increase of ROS production, enhanced lipid peroxidation and DNA strand breaks, yielding a significantly decreased survival. In contrast, the supplementation of UV-A in our work only showed a significant increase in total ROS levels and DNA strand breaks while no significant effect on lipid peroxidation, chlorophyll bleaching or survival was observed. The presence of ascorbic acid and N-acetyl-L-cysteine (NAC) reversed the oxidative stress and protected the organisms from chlorophyll bleaching and the damage of photosynthetic apparatus induced by UV-B significantly, resulting in a considerably higher survival rate. Ascorbic acid also exhibited a significant protective effect on lipid peroxidation and DNA strand breaks while NAC did not show a substantial effect. These results suggest that ascorbic acid exhibited significantly higher protective efficiency with respect to DNA strand breaks and survival than NAC while NAC appears to be especially effective in defending the photosynthetic apparatus from oxidative damage.  相似文献   

9.
The influence of a hydroxyl group simulating Ser-48 in the hydride-transfer step characteristic of liver alcohol dehydrogenase is studied on the hydride-transfer reaction as modeled by a methanolate anion interacting with a cyclo propenyl cation. It is shown first that this is an adequate model by comparing it to the methanolate-pyrydinium cation model transition structure, (TS ). The side-chain effect is modeled first by adding water and then with methanol located at the position that Ser-48 occupies in the enzyme; a supermolecule approach is used. It is found that (i) the normalized advance coordinate (NAC ) for the exchanged hydrogen has an invariant value at the TS and the reactant, while for the product, the NAC depends upon the external perturbation introduced by the ancillary molecule (the TS is reactant-like); (ii) the products are strongly destabilized, so the (activation) barrier with respect to the TS diminishes; (iii) the energy gap between reactants and products is sensibly diminished by the presence of methanol; (iv) the alcoholate moiety in the hydride transfer complex is not spontaneously protonated; and (v) there is a negligible charge transfer between the hydride-transfer system and models of Ser-48. In the present simplified model, methanol appears to have a catalytic effect via hydrogen bonding. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The steric effect, exerted by enzymes on their reacting substrates, has been considered as a major factor in enzyme catalysis. In particular, it has been proposed that enzymes catalyze their reactions by pushing their reacting fragments to a catalytic configuration which is sometimes called near attack configuration (NAC). This work uses computer simulation approaches to determine the relative importance of the steric contribution to enzyme catalysis. The steric proposal is expressed in terms of well defined thermodynamic cycles that compare the reaction in the enzyme to the corresponding reaction in water. The S(N)2 reaction of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, which was used in previous studies to support the strain concept is chosen as a test case for this proposal. The empirical valence bond (EVB) method provides the reaction potential surfaces in our studies. The reliability and efficiency of this method make it possible to obtain stable results for the steric free energy. Two independent strategies are used to evaluate the actual magnitude of the steric effect. The first applies restraints on the substrate coordinates in water in a way that mimics the steric effect of the protein active site. These restraints are then released and the free energy associated with the release process provides the desired estimate of the steric effect. The second approach eliminates the electrostatic interactions between the substrate and the surrounding in the enzyme and in water, and compares the corresponding reaction profiles. The difference between the resulting profiles provides a direct estimate of the nonelectrostatic contribution to catalysis and the corresponding steric effect. It is found that the nonelectrostatic contribution is about -0.7 kcal/mol while the full "apparent steric contribution" is about -2.2 kcal/mol. The apparent steric effect includes about -1.5 kcal/mol electrostatic contribution. The total electrostatic contribution is found to account for almost all the observed catalytic effect ( approximately -6.1 kcal/mol of the -6.8 calculated total catalytic effect). Thus, it is concluded that the steric effect is not the major source of the catalytic power of haloalkane dehalogenase. Furthermore, it is found that the largest component of the apparent steric effect is associated with the solvent reorganization energy. This solvent-induced effect is quite different from the traditional picture of balance between the repulsive interaction of the reactive fragments and the steric force of the protein.  相似文献   

11.
The thiol N-acetyl-L-cysteine (NAC) is a source of cysteine for the synthesis of the endogenous antioxidant glutathione (GSH) which is depleted by ultraviolet radiation. It is also associated with the scavenging of reactive oxygen species (ROS). In this study the effects of NAC were examined in cultured human fibroblasts during prolonged exposure to ultraviolet B (UVB), ultraviolet A (UVA) and visible irradiation (280-700 nm), delivered by a 150 W xenon-arc lamp. The alkaline comet assay was used to assess the DNA damage in individual cells. It was found that incubating skin and lung fibroblasts at 37 degrees C for 1 h with an optimal 6 mM NAC supplement prior to light exposure, significantly reduced the level of DNA damage in both cell types, however, the skin fibroblasts were less sensitive to xenon-arc lamp irradiation than lung fibroblasts. NAC incubation resulted in an initial delay in DNA damage when the cells were irradiated. There was also a significant reduction in the overall levels of DNA damage observed with continued irradiation. NAC significantly reduced the DNA damage produced in lung fibroblasts depleted of normal GSH protection by the glutamylcysteinyl synthetase inhibitor, L-buthionine-[S,R]-sulfoximine. Although the specific mechanism of NAC protection has not yet been elucidated, these results support the hypothesis that NAC may protect the cells directly, by scavenging ROS induced by UVA and visible radiation, and indirectly by donating cysteine for GSH synthesis.  相似文献   

12.
The complex formation between Cd(II) ions and N-acetylcysteine (H(2)NAC) in aqueous solution was investigated using Cd K- and L(3)-edge X-ray absorption and (113)Cd NMR spectroscopic techniques. Two series of 0.1 M Cd(II) solutions with the total N-acetylcysteine concentration c(H2NAC) varied between 0.2-2 M were studied at pH 7.5 and 11.0, respectively. At pH = 11 a novel mononuclear [Cd(NAC)(4)](6-) complex with the average Cd-S distance 2.53(2) ? and the chemical shift δ((113)Cd) = 677 ppm was found to dominate at a concentration of the free deprotonated ligand [NAC(2-)] > 0.1 M, consistent with our previous reports on cadmium tetrathiolate complex formation with cysteine and glutathione. At pH 7.5 much higher ligand excess ([HNAC(-)] > 0.6 M) is required to make this tetrathiolate complex the major species. The (113)Cd NMR spectrum of a solution containing c(Cd(II)) = 0.5 M and c(H2NAC) = 1.0 M measured at 288 K showed three broad signals at 421, 583 and 642 ppm, which can be attributed to CdS(3)O(3), CdS(3)O and CdS(4) coordination sites, respectively, in oligomeric Cd(II)-NAC species with single thiolate bridges between the cadmium ions.  相似文献   

13.
N-乙酰半胱氨酸(NAC)有减轻造影剂引发肾损伤的作用,但其作用机制尚未明确.本研究采用基于1H NMR的代谢组学方法,结合正交偏最小二乘法判别分析(OPLS-DA),在NAC保护下对慢性肾衰大鼠给药造影剂钆-二乙三胺五乙酸(Gd-DTPA), 通过分析大鼠尿液中内源性代谢物的变化,研究了NAC对慢性肾衰大鼠的保护机制.结果表明,慢性肾衰大鼠能量代谢、尿素循环等代谢通路发生紊乱.给药Gd-DTPA后,大鼠尿液中胆碱、N-氧三甲胺、邻羟基苯乙酸苯酯、对羟基苯乙酸苯酯、马尿酸、甘氨酸、烟酸、牛磺酸减少,尿囊素增加;而在NAC保护下相关代谢产物向模型组的恢复,说明NAC对Gd-DTPA引发的大鼠肠道细菌代谢、肝线粒体代谢、犬尿氨酸代谢紊乱及氧化损伤具有一定修复作用.NAC对尿素循环代谢的改善可能减轻大鼠体内的肾损伤,而其对细胞中谷胱甘肽的补充可能减轻Gd-DTPA造成的氧化损伤.  相似文献   

14.
The amphetamine (AMPH)‐induced alteration in rat brain dopamine levels modified by N‐acetylcysteine (NAC) administration has been examined using isocratic ion‐pair reversed‐phase high‐performance liquid chromatography with electrochemical detection. The aim of the development of a novel validated evaluation scheme implying a double AMPH challenge was to enhance the efficiency of AMPH‐triggered dopamine release measurements in rat brain striatal slices by improving the reproducibility of the results. The proposed experimental protocol was tested in vivo and proved to be capable of fast and reliable drug screening for tracing the effect of NAC as a model compound in AMPH‐mediated dopaminergic response. The subcellular localization of the dopamine mobilizing effect of NAC has been established indirectly by the use of an irreversible dopamine vesicular depletor, reserpine. The antioxidant NAC at 10 mm plays an important role in the complete suppression of acute AMPH‐elicited dopamine release. The possible role of this quenching effect is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The rates of intramolecular condensation of a series of monoesters of dicarboxylic acids have been shown to be highly dependent on the nature of the intervening groups. To understand the origin of this effect, we estimated DeltaS(NAC,S), the entropy difference between the ensemble of accessible ground state conformers and a single ground state conformer having transition-state-like geometry. DeltaS(NAC,S) differs from the activation entropy for the reaction by DeltaS(TS,NAC), the difference in vibrational entropy between the selected ground state conformer and the transition state. The estimated values of DeltaS(NAC,S) correlate well (R(2) = 0.96 and 0.73 using dielectric constant values of 80 and 1, respectively) with experimentally determined reaction rate constants. Normal-mode analysis performed on minimized ground state conformations of each molecule suggests that the change in vibrational entropy makes only a small contribution to the total activation entropy. These results indicate that the conformational entropy difference between the transition and the ground states contributes significantly to the free energy of activation.  相似文献   

16.
Abstract The major side effect of photodynamic therapy (PDT) using Photofrin® is enhanced skin sensitivity for sunlight, which persists for 3-8 weeks after injection. Formation of singlet oxygen and radicals is believed to be involved in the basic mechanism of inducing skin damage. Reducing this side effect would make PDT more widely acceptable, particularly for palliative use. Hairless dorsal skin patches of mice, injected with 10 mg kg−1 photofrin intraperitoneally (i.p.) 24 h before illumination, were used to evaluate the effect of increasing light doses. The light was obtained from a halogen lamp and transmitted via a fiber optic to illuminate a field of 2.5 cm2. After establishing a dose-response relationship for single or fractionated light dose illumination of the skin, drugs known to scavenge radicals, quench singlet oxygen or interfere with histamine release were tested for their protective effect. N -acetylcysteine (NAC), a radical scavenger, administered i.p. (1000 and 2000 mg kg−1) 1 h before illumination produced a significant decrease in skin damage at light doses >50 J cm−2 (protection factor of 1.3-1.8). When NAC was administered in a dose of 500 mg kg−1, no protection was observed. Fractionated illumination experiments in combination with multiple injections of NAC (1000 mg kg−1) also failed to show any protection. The addition of Ranitidine®, a histamine blocking agent (25-100 mg kg−1, given prior to illumination, resulted in a limited protection at higher light doses. From this study we conclude that NAC could be of value in amelioration of the photosensitivity in patients treated with PDT.  相似文献   

17.
Exposure of the nonsteroidal anti-inflammatory drug suprofen (SUP) to UV-radiation results in the formation of radicals, reactive oxygen species (ROS), photodecarboxylated products and photoadducts with biomacromolecules. Using an ex vivo pigskin explant model, we investigated whether topical coapplication of the water-soluble antioxidants vitamin C (Lascorbic acid, ASC), N-acetyl-L-cysteine (NAC) or L-cysteine ethylester (CYSET) with SUP reduced ultraviolet A (UVA)-induced decomposition of SUP. UVA-induced changes in antioxidant bioavailability in the stratum corneum and epidermis were also studied. Epidermal bioavailability of SUP in sham-irradiated pigskin increased 2.2- to 4.1-fold after the lowest antioxidant doses (P < 0.05). As compared with no applied antioxidant, increasing doses of all tested antioxidants resulted in increased levels of SUP and decreased levels of photoproducts (P < 0.05). A maximal protection against SUP photodegradation of 70% was found after an ASC dose of 1 micromol/cm2; these values were 60% for a NAC dose of 10 micromol/cm2 and 50% for a CYSET dose of 5 micromol/cm2. Skin antioxidant levels increased with increasing applied dose (P < 0.05); the bioavailability of CYSET was approximately three-fold lower than that of ASC and NAC. UVA exposure resulted in 30-50% consumption of the topically applied ASC or NAC in the stratum corneum, whereas CYSET was not consumed. In conclusion, the topically applied water-soluble antioxidants ASC, NAC and CYSET protect against UVA-induced decomposition of SUP by scavenging radicals and ROS. Coapplication of these antioxidants may therefore be an effective way to reduce or prevent the phototoxic effects of SUP in vivo.  相似文献   

18.
The Claisen rearrangements of chorismate (CHOR) in water and at the active site of E. coli chorismate mutase (EcCM) have been compared. From a total of 33 ns molecular dynamics simulation of chorismate in water solvent, seven diaxial conformers I-VII were identified. Most of the time (approximately 99%), the side chain carboxylate of the chorismate is positioned away from the ring due to the electrostatic repulsion from the carboxylate in the ring. Proximity of the two carboxylates, as seen in conformer I, is a requirement for the formation of a near attack conformer (NAC) that can proceed to the transition state (TS). In the EcCM.CHOR complex, the two carboxylates of CHOR are tightly held by Arg28 of one subunit and Arg11* of the other subunit, resulting in the side chain C16 being positioned adjacent to C5 with their motions restricted by van der Waals contacts with methyl groups of Val35 and Ile81. With the definition of NAC as the C5...C16 distance < or =3.7 A and the attack angle < or =30 degrees, it was estimated from our MD trajectories that the free energy of NAC formation is approximately 8.4 kcal/mol above the total ground state in water, whereas in the enzyme it is only 0.6 kcal/mol above the average of the Michaelis complex EcCM.CHOR. The experimentally measured difference in the activation free energies of the water and enzymatic reactions (Delta Delta G(++)) is 9 kcal/mol. It follows that the efficiency of formation of NAC (7.8 kcal/mol) at the active site provides approximately 90% of the kinetic advantage of the enzymatic reaction as compared to the water reaction. Comparison of the EcCM.TSA (transition state analogue) and EcCM.NAC simulations suggests that the experimentally measured 100 fold tighter binding of TSA compared to CHOR does not originate from the difference between NAC and the TS binding affinities, but might be due to the free energy cost to bring the two carboxylates of CHOR together to interact with Arg28 and Arg11* at the active site. The two carboxylates of TSA are fixed by a bicyclic structure. The remaining approximately 10% of Delta Delta G(++) may be attributed to a preferential interaction of Lys39-NH(3)(+) with O13 ether oxygen in the TS.  相似文献   

19.
Comet assay data (tail DNA %) have been gathered for the concentration dependent role of three antioxidants (AOs); quercetin (Q), epigallocatechin gallate (EGCG) and N-acetylcysteine (NAC) in reducing UV-induced damage to DNA in normal fetal lung fibroblasts (MRC5). All three compounds demonstrate a concentration dependent reduction maximum with a pro-oxidant effect at higher (though not cytotoxic) concentrations. Manipulation of a simple 4-step reaction mechanism for free radical (FR) scavenging by AOs produced rate constant ratios which allowed the relative effectiveness (Q > EGCG > NAC) of the AOs to be evaluated.  相似文献   

20.
Madicago sativa chalcone isomerase (CI) catalyzes the isomerization of chalcone to flavanone, whereas E. coli chorismate mutase (CM) catalyzes the pericyclic rearrangement of chorismate to prephenate. Covalent intermediates are not formed in either of the enzyme-catalyzed reactions, K(M) and k(cat) are virtually the same for both enzymes, and the rate constants (k(o)) for the noncatalyzed reactions in water are also the same. This kinetic identity of both the enzymatic and the nonenzymatic reactions is not shared by a similarity in driving forces. The efficiency (DeltaG(o)() - DeltaG(cat)()) for the CI mechanism involves transition-state stabilization through general-acid catalysis and freeing of three water molecules trapped in the E.S species. The contribution to lowering DeltaG(cat)() by an increase in near attack conformer (NAC) formation in E.S as compared to S in water is not so important. In the CM reaction, the standard free energy for NAC formation in water is 8.4 kcal/mol as compared to 0.6 kcal/mol in E.S. Because the value of (DeltaG(o)() - DeltaG(cat)()) is 9 kcal/mol, the greater percentage of NACs accounts for approximately 90% of the kinetic advantage of the CM reaction. There is no discernible transition-state stabilization in the CM reaction. These results are discussed. In anthropomorphic terms, each enzyme has had to do what it must to have a biologically relevant rate of reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号