首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and dynamics of size-selected charged pyrrole clusters have been studied by means of molecular beam scattering experiments and ab initio calculations. Small neutral Pyn clusters were produced in Py/He mixture expansions, and the scattering experiment with a secondary beam of He-atoms was exploited to select the neutral clusters of different sizes. The complete size-selected fragmentation patterns for the neutral dimer to the tetramer after an electron impact ionization at 70 eV were obtained from the measurements of the angular and velocity distributions at different fragment masses. All the investigated cluster sizes decay mainly to the monomer ions Py+1 (from 60 to 80% of the corresponding neutral size) and to the dimer ion Py+2 (20-30%). The trimer ions Py+3 are generated to less than 10% from the neutral trimer and tetramer. To explain the observed results, we have calculated the structures and energetics of pyrrole clusters up to the trimer for the neutral and the ionic state using DFT and PMP2 methods. The ab initio calculations show that ionized pyrrole clusters are formed with a dimeric core that is solvated by neutral pyrrole molecules. In addition, the ground and ionic state of Py-Ar complexes were calculated at CCSD(T) level with extended basis in relevance to the mixed clusters produced in supersonic expansions of Py seeded in Ar. The calculated dissociation energies of the Py-Ar and (Py-Ar)+ complexes indicate that Ar atoms are able to rapidly evaporate after ionization. The combined analysis of the fragmentation probabilities, and calculations allowed us to estimate the distribution of energy deposited in the clusters after the electron impact, which peaks above 1 eV and has a tail up to 5 eV.  相似文献   

2.
The energetics and the structural properties of some of the smaller ionic clusters of neon atoms (Nen+, with n up to 25) are examined using different modeling for the interactions within each cluster moiety. A new, very simple model for the global interaction, the polygon growth model or PGM, is presented and discussed in detail. The results of the calculations, and the physical reliability of the methods, are then examined in comparison with earlier theoretical results and with some available experimental data. In spite of the simplicity of the PGM scheme, the present treatment shows it to be able to reproduce all the important features known for these clusters from earlier calculations and from measurements.  相似文献   

3.
A new approach for obtaining an estimate of the effective size of the free neutral clusters is proposed. The approach relies on an experimental measure of the surface and interior or "bulk" cluster atoms provided by the x-ray photoelectron spectroscopy and on a model for the attenuation of photoelectrons ejected from the bulk of the cluster as the result of the ionizing irradiation. The experimental part gives the ratio of the electron signal from the bulk cluster atoms to that from the cluster surface atoms for a wide range of cluster sizes and electron kinetic energies. The attenuated response of the bulk atoms is modeled using an exponential law with the cluster size and kinetic-energy-dependent electron escape depth as parameters. For the experimental size range, model-based calculations for Ar, Kr, and Xe clusters are presented. The cluster size estimates obtained from comparison of the model calculations and experimental results agree well with those determined from the parameters of the cluster creation process. The combination of experiment and modeling also makes it possible to estimate the effective escape depth for electron propagation in free clusters. For Ar, Kr, and Xe clusters of varying mean size, absolute determination of the surface and bulk electron binding energies of the core levels used in the experiments has also been made.  相似文献   

4.
We report experimental infrared spectra of neutral metal clusters in the gas phase. Multiple photon dissociation of the argon complexes of niobium clusters is used to obtain vibrational spectra in the 80-400 cm(-1) region. The observed spectra for Nb(9)Ar(n) (n=1-4) are different for different values of n. This is explained by the presence of two isomers of Nb(9) that have different affinities towards Ar and the isomer specific infrared spectra are obtained. The structures of the isomers are determined by comparing the observed spectra with the outcome of density-functional theory calculations.  相似文献   

5.
The size-specific influence of the M+ alkali ion (M = Li, Na, K, Rb, and Cs) in the solvation process of the M+-benzene clusters by Ar atoms is investigated by means of molecular dynamic simulations. To fully understand the behavior observed in M+-bz-Ar(n) clusters, solvation is also studied in clusters containing either M+ or benzene only. The potential energy surfaces employed are based on a semiempirical bond-atom decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions, studying the evolution of the distances between the Ar atoms and the alkali ion M+ or the benzene molecule for all M+-bz-Ar(n) clusters. For all members, in the M+-bz series, the benzene molecule (bz) is found to remain strongly bound to M+ even in the presence of solvent atoms. The radial distribution functions for the heavier clusters (K+-bz, Rb+-bz, and Cs+-bz), are found to be different than for the lighter (Na+-bz and Li+-bz) ones.  相似文献   

6.
Xu M  Bacić Z  Hutson JM 《Faraday discussions》2001,(118):405-17; discussion 419-31
The size evolution of the equilibrium structures of open-shell ArnCH (X 2 pi) Van der Waals clusters is investigated for n = 1 to 15. We describe a method for combining pair potentials for Ar-CH and Ar-Ar interactions to obtain potential energy surfaces for ArnCH clusters. For each cluster size considered, the global and a few energetically close local minima are calculated using simulated annealing followed by a direct minimization scheme. Ar2CH is found to have an unusually stable planar structure, which persists as a motif in larger ArnCH clusters and has a strong effect on their optimal geometries. The lowest-energy isomers of ArnCH with n = 3 to 11 have all Ar atoms in a shell around CH. The only exception is Ar4CH, where the fully solvated isomer is 3 cm-1 higher in energy than the optimal isomer with CH bound to the surface of the Ar4 tetrahedron. For n = 7 to 11, the minimum-energy structure of ArnCH derives from the global minimum of the Arn + 1 cluster, by replacing the Ar atom at the bottom of the pentagonal bipyramid with CH. The lowest-energy structure of Ar12CH is that of the optimal icosahedral Ar13 cluster, with CH replacing one of the Ar atoms on the cluster surface. This structure supports the proposition based on the spectroscopic data, that for ArnCH clusters with about 10 to 50 Ar atoms CH resides on the surface of Arn.  相似文献   

7.
Infrared photodissociation (IRPD) spectra of mass-selected clusters composed of protonated aniline (C6H8N+ = AnH+) and a variable number of neutral ligands (L = Ar, N2) are obtained in the N-H stretch range. The AnH+ -Ln complexes (n < or = 3) are produced by chemical ionization in a supersonic expansion of An, H2, and L. The IRPD spectra of AnH+-Ln feature the unambiguous fingerprints of at least two different AnH+ nucleation centers, namely, the ammonium isomer (5) and the carbenium ions (1 and/or 3) corresponding to protonation at the N atom and at the C atoms in the para and/or ortho positions, respectively. Protonation at the meta and ipso positions is not observed. Both classes of observed AnH+-Ln isomers exhibit very different photofragmentation behavior upon vibrational excitation arising from the different interaction strengths of the AnH+ cores with the surrounding neutral ligands. Analysis of the incremental N-H stretch frequency shifts as a function of cluster size shows that microsolvation of both 5 and 1/3 in Ar and N2 starts with the formation of intermolecular H bonds of the ligands to the acidic NH protons and proceeds by intermolecular pi bonding to the aromatic ring. The analysis of both the photofragmentation branching ratios and the N-H stretch frequencies demonstrates that the N-H bonds in 5 are weaker and more acidic than those in 1/3, leading to stronger intermolecular H bonds with L. The interpretation of the spectroscopic data is supported by density functional calculations conducted at the B3LYP level using the 6-31G* and 6-311G(2df,2pd) basis sets. Comparison with clusters of neutral aniline and the aniline radical cation demonstrates the drastic effect of protonation and ionization on the acidity of the N-H bonds and the topology of the intermolecular potential, in particular on the preferred aromatic substrate-nonpolar ligand recognition motif.  相似文献   

8.
The structure and properties of small neutral and cationic CrGen(0,+) clusters, with n from 1 to 5, were investigated using quantum chemical calculations at the CASSCF/CASPT2 and DFT/B3LYP levels. Smaller clusters prefer planar geometries, whereas the lowest-lying electronic states of the neutral CrGe4, CrGe5, and cationic CrGe5+ forms exhibit nonplanar geometries. Most of the clusters considered prefer structures with high-spin ground state and large magnetic moments. Relative to the values obtained for the pure Gen clusters, fragmentation energies of doped CrGen clusters are smaller when n is 3 and 4 and larger when n = 5. The averaged binding energy tends to increase with the increasing number of Ge atoms. For n = 5, the binding energies for Ge5, CrGe5, and CrGe5+ are similar to each other, amounting to approximately 2.5 eV. The Cr atom acts as a general electron donor in neutral CrGen clusters. Electron localization function (ELF) analyses suggest that the chemical bonding in chromium-doped germanium clusters differs from that of their pure or Li-doped counterparts and allow the origin of the inherent high-spin ground state to be understood. The differential DeltaELF picture, obtained in separating both alpha and beta electron components, is consistent with that derived from spin density calculations. For CrGen, n = 2 and 3, a small amount of d-pi back-donation is anticipated within the framework of the proposed bonding model.  相似文献   

9.
The electronic structures and stabilities of cationic MPb12+ clusters (M = B, Al, Ga, In, and Tl) with 50 valence electrons are investigated within density functional theory. It is shown that, at the B3LYP/cc-pVDZ(-PP) and BPW91/cc-pVDZ(-PP) levels of theory, the structures of MPb12+ with icosahedra (I(h)) symmetry are energetically favorable, and their high stabilities may arise from the closed-shell nature of the pi subsystems which are subject to the 2(N(pi + 1)2 rule with N(pi = 1). In addition, the possessing of large nucleus-independent chemical shifts of the five kinds of clusters reflects the common aromatic character of these clusters. From the comparison of our studies on the binding energies and the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy gaps, the cluster AlPb12+ has higher stability than the others and this is consistent with the recent mass-spectrometric discovery of Al-doped Pb(n)+ clusters, in which AlPb12+ is highly abundant. The same methods are used to search for the structures of the neutral MPb12 clusters. The calculations reveal that the most stable geometries of the BPb12 and GaPb12 clusters have I(h) symmetry, the AlPb12 and InPb12 clusters have T(h) symmetry, and the TlPb12 cluster has C5v symmetry. Furthermore, the vertical ionization potentials of the neutral MPb12 clusters are smaller than that of some alkali atoms, indicating that the neutral MPb12 clusters possess superalkali character.  相似文献   

10.
Various structural possibilities for Al(n)B(m) (n=1-7, m=1-2) neutral isomers were investigated using B3LYP6-311G(d) and CCSD(T)6-311G(d) methods. Our calculations predicted the existence of a number of previously unknown isomers. The B atom favors to locate over/inside of all clusters in this series. All structures of the Al(n)B (n=2-7) may be derived from capping/putting a B atom over/inside the Al(n) cluster. All Al(n)B(2) (n=1-5) may be understood as two substitutions of Al atoms by B atoms in the Al(n+2) molecule. The strong B-B bond is a dominant factor in the building-up principle of mixed Al(n)B(2) neutral clusters. The second difference in energy showed that the Al(n)B(m) clusters with even n+m are more stable than those with odd n+m. Our results and analyses revealed that the mixed Al-B clusters exhibit aromatic behaviors.  相似文献   

11.
The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of Si(n)M(+) (n = 4-11 for M = V, and n = 6-11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding Si(n)M(+)·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si(9)Cu(+), Si(11)Cu(+), and Si(10)V(+), the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metal's 3d orbitals in the binding of the dopant atoms.  相似文献   

12.
The stable structures and vibrational spectra of protonated acetone molecule clusters with different sizes (CH3COCH3)nH +(n=1-7)are calculated at the 6-31G(d)level by means of density functional theory (B3LYP)quantum chemical calculations. The corresponding energies are analyzed at the level B3LYP/6-311+G(3df,2p)in order to obtain more accurate results. The proton affinity of neutral cyclic acetone molecule clusters increases with the increasing of cluster size. The calculated results show that the protonated acetone clusters have certain growth regularity with forming a solvation shell at the beginning and then new added acetone molecule attacking different active sites including the middle carbon atoms and the different methyl in solvation shell. The IR spectra of the protonated clusters are more complicate than that of neutral ones. The strongest peaks result from the movement of the proton between the two oxygen atoms in solvant shell apart from the case of n=1. Carbonyl stretching vibraional peaks split into the more and more and in general the corresponding intensities are weakened due to the protonation with the increasing of cluster size.  相似文献   

13.
用分子图形软件设计出49种硫原子团簇Sn+(n=3~13)的结构,使用B3LYP密度泛函进行几何构型优化和振动频率计算,根据分子的总能量得出最稳定的同分异构体.在硫原子团簇正离子中,大部分原子为二配位成键.带有一、三配位的原子结构的总能量较高.部分最稳定硫原子团簇正离子的构型与最稳定的中性硫原子团簇的构型完全不同.  相似文献   

14.
Binding of clusters of gold atoms (Au) with the guanine-cytosine (GC) and adenine-thymine (AT) Watson-Crick DNA base pairs was studied using the density functional theory (DFT). Geometries of the neutral GC-Au(n) and AT-Au(n) and the corresponding anionic (GC-Au(n))(-1) and (AT-Au(n))(-1) (n = 4, 8) complexes were fully optimized in different electronic states, that is, singlet and triplet states for the neutral complexes and doublet and quartet states for the anionic complexes, using the B3LYP density functional method. The 6-31+G basis set was used for all atoms except gold. For gold atoms, the Los Alamos effective core potential (ECP) basis set LanL2DZ was employed. Vibrational frequency calculations were performed to ensure that the optimized structures corresponded to potential energy surface minima. The gold clusters around the neutral GC and AT base pairs have a T-shaped structure, which satisfactorily resemble those observed experimentally and in other theoretical studies. However, in anionic GC and AT base pairs, the gold clusters have extended zigzag and T-shaped structures. We found that guanine and adenine have high affinity for Au clusters, with their N3 and N7 sites being preferentially involved in binding with the same. The calculated adiabatic electron affinities (AEAs) of the GC-Au(n)complexes (n = 4, 8) were found to be much larger than those of the isolated base pairs.  相似文献   

15.
Possible structures of the carbon-nitrogen clusters of the form C(m)N(n) (m = 1-4, n = 1-4, m + n = 2-5) were predicted for the neutral, anion, and cation species in the singlet, doublet, and triplet states, whenever appropriate. The calculations were performed at the G3, MP2(fc)/6-311+G*, and B3LYP/6-311+G* levels of theory. Several molecular properties related to the experimental data--such as the electronic energy, equilibrium geometry, binding energy, HOMO-LUMO gap (HLG), and spin contamination --were calculated. In addition the vertical electron attachment, the adiabatic electron affinity, and vertical ionization energy, of the neutral clusters were calculated. Most of the predicted lowest energy structures were linear, whereas bent structures became more stable with the increase of the cluster size and increase of the number of the N atoms. In most of the predicted lowest energy structures, the N atom prefers the terminal position with acetylenic bond. The calculated BE of the predicted clusters increases with the increase of the cluster size for the neutral and cation clusters but decreases with the increase of the cluster size for the anion clusters. The predicted clusters are characterized by high HLG of about 11 eV on the average, with that of the anion clusters is smaller than that for the neutral and cation clusters. It is concluded then that the anion clusters are less stable than the corresponding neutral and cation clusters. Finally, the N(2) loss reaction is treated.  相似文献   

16.
Laser-ablated U atoms react with CO in excess argon to produce CUO, which gives rise to 852.5 and 804.3 cm-1 infrared absorptions for the triplet state CUO(Ar)n complex in solid argon at 7 K. Relativistic density functional calculations show that the CUO(Ar) complex is stable and that up to four or five argon atoms can complex to CUO. When 1-3% Xe is added to the argon/CO reagent mixture, strong absorptions appear at 848.0 and 801.3 cm-1 and dominate new four-band progressions, which increase on annealing to 35-50 K as Xe replaces Ar in the intimate coordination sphere. Analogous spectra are obtained with 1-2% Kr added. This work provides evidence for eight distinct CUO(Ng)n(Ar)4-n (Ng = Kr, Xe, n = 1, 2, 3, 4) complexes and the first characterization of neutral complexes involving four noble-gas atoms on one metal center.  相似文献   

17.
Minimum-energy structures of the Rg(2)-N(2)O (Rg=He, Ne, Ar) clusters have been determined with ab initio MP2 optimization, whereas the minimum-energy structures of the Rg(n)-N(2)O clusters with n = 3-7 have been obtained with the pairwise additive potentials. Interaction energies and nonadditive three-body effects of the Rg(2)-N(2)O ternary complex have been calculated using supermolecule method at MP4 and CCSD(T) levels. It was found from the calculations that there are two minima corresponding to one distorted tetrahedral structure and one planar structure for the ternary complex. The nonadditive three-body effects were found to be small for Rg(2)-N(2)O complexes. Our calculations also indicated that, for He(n)-N(2)O and Ne(n)-N(2)O clusters, the first six He and Ne atoms form the first solvation ring around the middle nitrogen of the N(2)O monomer, while for Ar(n)-N(2)O, the first five Ar atoms form the first solvation ring.  相似文献   

18.
We have performed systematic ab initio calculations to study the structures and stability of Si(6)O(n)() clusters (n = 1-12) in order to understand the oxidation process in silicon systems. Our calculation results show that oxidation pattern of the small silicon cluster, with continuous addition of O atoms, extends from one side to the entire Si cluster. Si atoms are found to be separated from the pure Si cluster one-by-one by insertion of oxygen into the Si-O bonds. From fragmentation energy analyses, it is found that the Si-rich clusters usually dissociate into a smaller pure Si clusters (Si(5), Si(4), Si(3), or Si(2)), plus oxide fragments such as SiO, Si(2)O(2), Si(3)O(3), Si(3)O(4), and Si(4)O(5). We have also studied the structures of the ionic Si(6)O(n)(+/-) (n = 1-12) clusters and found that most of ionic clusters have different lowest-energy structures in comparison with the neutral clusters. Our calculation results suggest that transformation Si(6)O(n)+(a) + O --> Si(6)O(n+1)+(a) should be easier.  相似文献   

19.
The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering the rearrangement of n (n = 1, ..., 19) Ar atoms around Na+-benzene clusters and using an atom-bond potential energy surface. The nature of the bonding is discussed on the basis of the decomposition of the interaction energy and of the formation of the possible conformers. The benzene molecule is found to remain strongly bound to Na+ independently of the number of solvating rare-gas atoms, although due to the anisotropy of the interaction potential, the Ar atoms solvate the Na+-benzene cluster preferentially on the side of the cation. Other specific features of the solvation process are discussed.  相似文献   

20.
We have investigated the effect of aluminum impurity atoms on the geometric structures and stabilities of neutral and ionic Sin (n = 2–21) clusters in detail by using full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method. Our calculations suggest that most of the ground state structures for neutral and ionic SinAl (n = 1–20) clusters can be obtained by substituting one Si atom of their corresponding Si clusters with an Al atom. The neutral Sin–1Al clusters with one Al atom have similar geometrical configurations to those of the pure Sin clusters except for local structural distortion. But one Al impurity atom probably reverses the energy ordering of two isomers with small difference. Although, an Al heteroatom reduces the average binding energies for the mixed clusters, it would improve the bond strength between Si atoms in some mixed clusters. Our calculations also suggest that most of the ionic Sin–1Al clusters adopt the same geometrical configurations as their neutral clusters. But for one selected mixed cluster, the charged structures probably have different energy ordering from the neutral clusters. The anionic Sin–1Al clusters, which are isoelectronic to their corresponding pure Sin clusters, show similar magic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号