首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report fluorescence excitation and emission spectra of CHBr in the 450-750 nm region. A total of 30 cold bands involving the pure bending levels 2(0)(n) with n=2-8 and combination bands 2(0)(n)3(0)(1)(n=1-8), 2(0) (n)3(0)(2)(n=1-6), 2(0)(n)3(0)(3)(n=1-2), 1(0)(1)2(0)(n)(n=5-7), 1(0)(1)2(0)(n)3(0)(1)(n=4-6), and 1(0)(1)2(0)(n)3(0)(2)(n=5) in the A (1)A(")<--X (1)A(') system were observed, in addition to a number of hot bands. The majority of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis yielded band origins and rotational constants for both bromine isotopomers (CH (79)Br,CH (81)Br). The derived A (1)A(") vibrational intervals are combined with results of [Yu et al. J. Chem. Phys. 115, 5433 (2001)] to derive barriers to linearity for the 2(n), 2(n)3(1), and 2(n)3(2) progressions. The A (1)A(") state C-H stretching frequency is determined here for the first time, and the observed nu(3) dependence of the (79)Br-(81)Br isotope splitting in the A(1)A(") state is in good agreement with theoretical expectations. Our dispersed fluorescence spectra probe the vibrational structure of the X(1)A(') state up to approximately 9000 cm(-1) above the vibrationless level; the total number of levels observed is more than twice that previously reported. As first reported by [Chen et al. J. Mol. Spectrosc. 209, 254 (2001)], these spectra reveal numerous perturbations due to spin-orbit interaction with the low-lying a(3)A(") state. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with previous experimental and theoretical studies, are reported. Our results lead to several revised assignments, including the X (1)A(') C-H stretching fundamental. Globally, the vibrational frequencies of X(1)A('), a(3)A("), and A(1)A(") are in excellent agreement with theoretical predictions.  相似文献   

2.
We report new fluorescence excitation and single vibronic level emission spectra of the A (1)A(")<-->X (1)A(') system of CHCl. A total of 21 cold bands involving the pure bending levels 2(0) (n) with n=1-7 and combination bands 2(0) (n)3(0) (1)(n=4-7), 2(0) (n)3(0) (2)(n=4-6), 1(0) (1)2(0) (n)(n=5-7), 1(0) (1)2(0) (n)3(0) (1)(n=4-6), and 1(0) (1)2(0) (n)3(0) (2)(n=4) were observed in the 450-750 nm region; around half of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis typically yielded band origins and rotational constants for both isotopomers (CH(35)Cl,CH(37)Cl). The derived A (1)A(") vibrational intervals are combined with results of Chang and Sears to determine the excited state barrier to linearity [V(b)=1920(50) cm(-1)]. The A (1)A(") state C-H stretching frequency is determined here for the first time, in excellent agreement with ab initio predictions. Following our observation of new bands in this system, we obtained the single vibronic level (SVL) emission spectra which probe the vibrational structure of the X (1)A(') state up to approximately 9000 cm(-1) above the vibrationless level. The total number of X (1)A(') levels observed is around three times than that previously reported, and we observe five new a (3)A(") state levels, including all three fundamentals. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with the previous experimental and recent high level ab initio studies, are reported. Our data confirm the previous assignment of the a (3)A(") origin, and our value for T(00)(a-X)=2172(2) cm(-1) is in excellent agreement with theory. By exploiting SVL spectra from excited state levels with K(a) (')=1, we determine the effective rotational constant (A-B) of the triplet origin, also in good agreement with theory. Our results shed new light on the vibrational structure of the X (1)A('), A (1)A("), and a (3)A(") states of CHCl, and, more generally, spin-orbit coupling in the monohalocarbenes.  相似文献   

3.
To further investigate the Renner-Teller (RT) effect and barriers to linearity and dissociation in the simplest singlet carbene, we recorded fluorescence excitation spectra of bands involving the pure bending levels 2(n)(0) with n = 0-9 and the combination states 1(1)(0)2(n)(0) with n = 1-8 and 2(n)(0)3(1)(0) with n = 0-5 in the A(1)A'<-- X(1)A' system of CDF, in addition to some weak hot bands. The spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotationally analyzed to yield precise values for the band origins and rotational constants; fluorescence lifetimes were also measured to probe for lifetime lengthening effects due to the RT interaction. The derived A state parameters are compared with previous results for CHF and with predictions of ab initio electronic structure theory. The approach to linearity in the A state is evidenced in a sharp increase in the A rotational constant with bending excitation, and a minimum in the vibrational intervals near 2(9). A fit of the vibrational intervals for the pure bending levels yields an A state barrier to linearity in good agreement both with that previously derived for CHF and ab initio predictions. From the spectra and lifetime measurements, the onset of extensive RT perturbations is found to occur at a higher energy than in CHF, consistent with the smaller A constant.  相似文献   

4.
We present the spin-orbit (SO) and Renner-Teller (RT) quantum dynamics of the spin-forbidden quenching O((1)D) + N(2)(X(1)Σ(g)(+)) → O((3)P) + N(2)(X(1)Σ(g)(+)) on the N(2)O X(1)A', ?(3)A", and b(3)A' coupled PESs. We use the permutation-inversion symmetry, propagate coupled-channel (CC) real wavepackets, and compute initial-state-resolved probabilities and cross sections σ(j(0)) for the ground vibrational and the first two rotational states of N(2), j(0) = 0 and 1. Labeling symmetry angular states by j and K, we report selection rules for j and for the minimum K value associated with any electronic state, showing that ?(3)A" is uncoupled in the centrifugal-sudden (CS) approximation at j(0) = 0. The dynamics is resonance-dominated, the probabilities are larger at low K, σ(j(0)) decrease with the collision energy and increase with j(0), and the CS σ(0) is lower than the CC one. The nonadiabatic interactions play different roles on the quenching dynamics, because the X(1)A'-b(3)A' SO effects are those most important while the ?(3)A"-b(3)A' RT ones are negligible.  相似文献   

5.
We recorded dispersed fluorescence (DF) spectra following excitation of the pure bending levels 2(0) (n) and the combination states 1(0) (1)2(0) (n) and 2(0) (n)3(0) (1) in the A 1A"<--X 1A' system of HCF and DCF. Spectra were measured with a 0.3 m spectrograph equipped with a gated intensified charge coupled device (CCD) detector and obtained under jet-cooled conditions using a pulsed discharge source. The DF spectra reveal rich detail concerning the vibrational structure of the X state up to 10 000 cm(-1). For HCF, resonances among the nearly degenerate levels 1(1)2n, 2n+13(1), and 2n+2 produce a polyadlike structure in the spectrum, and the usual effective spectroscopic Hamiltonian (Dunham expansion) poorly reproduces the experimental term energies. In contrast, this Hamiltonian works well for the term energies of DCF. Density functional calculations of the ground state vibrational frequencies were performed; the results are in excellent agreement with the experimentally derived vibrational parameters. The search for perturbations involving the low-lying a 3A" state is described.  相似文献   

6.
The Renner-Teller effect in C(2)H(2)(+)(X(2)Pi(u)) has been studied by using zero kinetic energy (ZEKE) photoelectron spectroscopy and coherent extreme ultraviolet (XUV) radiation. The rotationally resolved vibronic spectra have been recorded for energies up to 2000 cm(-1) above the ground vibrational state. The C triple bond C symmetric stretching (upsilon(2)), the CCH trans bending (upsilon(4)), and the CCH cis bending (upsilon(5)) vibrational excitations have been observed. The assigned vibronic bands are 4(1)(1)(kappa(2)Sigma(u)(+))(hot band), 4(1)(0)(mu/kappa(2)Sigma (u)(-/+)), 5(1)(0)(mu/kappa(2)Sigma (g)(+/-)), and 4(2)(0)(mu(2)Pi(u)), 4(2)(0)(kappa(2)Pi(u)), 4(1)(0)5(1)(0) (mu(2)Pi(g)), 0(0)(0)(X(2)Pi(u)), and 2(1)(0)(X(2)Pi(u)). The Renner-Teller parameters, the harmonic frequencies, the spin-orbit coupling constants, and the rotational constants for the corresponding vibronic bands have been determined by fitting the spectra with energy eigenvalues from the Hamiltonian that considers simultaneously Renner-Teller coupling, vibrational energies, rotational energies, and spin-orbit coupling interaction.  相似文献   

7.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

8.
Previously calculated resonance widths of the ground vibrational levels in the electronic states 1 (3)A" ((3)A(2)) and 1 (3)A' ((3)B(2)), which belong to the Wulf band system of ozone, are significantly smaller than observed experimentally. We demonstrate that predissociation is drastically enhanced by spin-orbit coupling between 1 (3)A"/X (1)A' and 1 (3)A'/1 (3)A". Multistate quantum mechanical calculations using ab initio spin-orbit coupling matrix elements give linewidths of optically bright components of the right order of magnitude.  相似文献   

9.
A pump-probe laser-induced fluorescence technique has been used to examine the nascent OH X (2)Pi product state distribution arising from non-reactive quenching of electronically excited OH A (2)Sigma(+) by molecular hydrogen and deuterium under single-collision conditions. The OH X (2)Pi products were detected in v'=0, 1 and 2; the distribution peaks in v'=0 and decreases monotonically with increasing vibrational excitation. In all vibrational levels probed, the OH X (2)Pi products are found to be highly rotationally excited, the distribution peaking at N'=15 when H(2) was used as the collision partner and N'=17 for D(2). A marked propensity for production of Pi(A') Lambda-doublet levels was observed, while both OH X (2)Pi spin-orbit manifolds were equally populated. These observations are interpreted as dynamical signatures of the nonadiabatic passage of the OH + H(2)/D(2) system through the seams of conical intersection that couple the excited state (2 (2)A') and ground state (1 (2)A') surfaces.  相似文献   

10.
Ultrafast electronic-vibrational relaxation upon excitation of the singlet charge-transfer b (1)A' state of [Re(L)(CO) 3(bpy)] ( n ) (L = Cl, Br, I, n = 0; L = 4-Et-pyridine, n = 1+) in acetonitrile was investigated using the femtosecond fluorescence up-conversion technique with polychromatic detection. In addition, energies, characters, and molecular structures of the emitting states were calculated by TD-DFT. The luminescence is characterized by a broad fluorescence band at very short times, and evolves to the steady-state phosphorescence spectrum from the a (3)A" state at longer times. The analysis of the data allows us to identify three spectral components. The first two are characterized by decay times tau 1 = 85-150 fs and tau 2 = 340-1200 fs, depending on L, and are identified as fluorescence from the initially excited singlet state and phosphorescence from a higher triplet state (b (3)A"), respectively. The third component corresponds to the long-lived phosphorescence from the lowest a (3)A" state. In addition, it is found that the fluorescence decay time (tau 1) corresponds to the intersystem crossing (ISC) time to the two emissive triplet states. tau 2 corresponds to internal conversion among triplet states. DFT results show that ISC involves electron exchange in orthogonal, largely Re-localized, molecular orbitals, whereby the total electron momentum is conserved. Surprisingly, the measured ISC rates scale inversely with the spin-orbit coupling constant of the ligand L, but we find a clear correlation between the ISC times and the vibrational periods of the Re-L mode, suggesting that the latter may mediate the ISC in a strongly nonadiabatic regime.  相似文献   

11.
Laser-induced fluorescence spectra of Br(2) entrained in a He supersonic expansion have been recorded in the Br(2) B-X, 8-0, 12-0, and 21-0 spectral regions at varying downstream distances, and thus different temperature regimes. Features associated with transitions of the T-shaped and linear He...Br(2)(X,nu(") = 0) complexes are identified. The changes in the relative intensities of the T-shaped and linear features with cooling in the expansion indicate that the linear conformer is energetically more stable than the T-shaped conformer. A He + Br(2)(X,nu(") = 0) ab initio potential-energy surface, computed at the coupled cluster level of theory with a large, flexible basis set, is used to calculate the binding energies of the two conformers, 15.8 and 16.5 cm(-1) for the T-shaped and linear complexes, respectively. This potential and an excited-state potential [M. P. de Lara-Castells, A. A. Buchachenko, G. Delgado-Barrio, and P. Villareal, J. Chem. Phys. 120, 2182 (2004)] are used to calculate the excitation spectra of He...(79)Br(2)(X,nu(") = 0) in the Br(2) B-X, 12-0 region. The calculated spectra are used to make spectral assignments and to determine the energies of the excited-state intermolecular vibrational levels accessed in the observed transitions. Temperature-dependent laser-induced fluorescence spectra and a simple thermodynamic model [D. S. Boucher, J. P. Darr, M. D. Bradke, R. A. Loomis, and A. B. McCoy, Phys. Chem. Chem. Phys. 6, 5275 (2004)] are used to estimate that the linear conformer is 0.4(2) cm(-1) more strongly bound than the T-shaped conformer. Two-laser action spectroscopy experiments reveal that the binding energy of the linear He...(79)Br(2)(X,nu(") = 0) conformer is 17.0(8) cm(-1), and that of the T-shaped He...(79)Br(2)(X,nu(") = 0) conformer is then 16.6(8) cm(-1), in good agreement with the calculated values.  相似文献   

12.
The electronic spectrum of a cold molecular beam of zirconium dioxide, ZrO(2), has been investigated using laser induced fluorescence (LIF) in the region from 17,000 cm(-1) to 18,800 cm(-1) and by mass-resolved resonance enhanced multi-photon ionization (REMPI) spectroscopy from 17,000 cm(-1)-21,000 cm(-1). The LIF and REMPI spectra are assigned to progressions in the A?(1)B(2)(ν(1), ν(2), ν(3)) ← X?(1)A(1)(0, 0, 0) transitions. Dispersed fluorescence from 13 bands was recorded and analyzed to produce harmonic vibrational parameters for the X?(1)A(1) state of ω(1) = 898(1) cm(-1), ω(2) = 287(2) cm(-1), and ω(3) = 808(3) cm(-1). The observed transition frequencies of 45 bands in the LIF and REMPI spectra produce origin and harmonic vibrational parameters for the A?(1)B(2) state of T(e) = 16,307(8) cm(-1), ω(1) = 819(3) cm(-1), ω(2) = 149(3) cm(-1), and ω(3) = 518(4) cm(-1). The spectra were modeled using a normal coordinate analysis and Franck-Condon factor predictions. The structures, harmonic vibrational frequencies, and the potential energies as a function of bending angle for the A?(1)B(2) and X?(1)A(1) states are predicted using time-dependent density functional theory, complete active space self-consistent field, and related first-principle calculations. A comparison with isovalent TiO(2) is made.  相似文献   

13.
The ground (X (3)Sigma(-)) and first excited triplet (A (3)Pi) electronic states of diazocarbene (CNN) have been investigated systematically starting from the self-consistent-field theory and proceeding to the coupled cluster with single, double, and full triple excitations (CCSDT) method with a wide range of basis sets. While the linear X (3)Sigma(-) ground state of CNN has a real degenerate bending vibrational frequency, the A (3)Pi state of CNN is subject to the Renner-Teller effect and presents two distinct real vibrational frequencies along the bending coordinate. The bending vibrational frequencies of the A (3)Pi state were evaluated via the equation-of-motion coupled cluster (EOM-CC) techniques. The significant sensitivity to level of theory in predicting the ground-state geometry, harmonic vibrational frequencies, and associated infrared intensities has been attributed to the fact that the reference wave function is strongly perturbed by the excitations of 1pi-->3pi followed by a spin flip. At the highest level of theory with the largest basis set, correlation-consistent polarized valence quadruple zeta (cc-pVQZ) CCSDT, the classical X-A splitting (T(e) value) was predicted to be 68.5 kcal/mol (2.97 eV, 24 000 cm(-1)) and the quantum mechanical splitting (T(0) value) to be 69.7 kcal/mol (3.02 eV, 24 400 cm(-1)), which are in excellent agreement with the experimental T(0) values, 67.5-68.2 kcal/mol (2.93-2.96 eV, 23 600-23 900 cm(-1)). With the EOM-CCSD method the Renner parameter (epsilon) and averaged bending vibrational frequency (omega(2)) for the A (3)Pi state were evaluated to be epsilon=-0.118 and omega(2)=615 cm(-1), respectively. They are in fair agreement with the experimental values of epsilon=-0.07 and nu(2)=525 cm(-1).  相似文献   

14.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

15.
By using cavity ring-down absorption spectroscopy technique, we have observed the channel of Br2 molecular elimination following photodissociation of CF2Br2 at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolyzing laser beam in a ring-down cell, is used to probe the Br2 fragment in the B 3Piou+-X1Sigmag+ transition. The vibrational population is obtained in a nascent state, despite ring-down time as long as 500-1000 ns. The population ratio of Br2(v=1)/Br2(v=0) is determined to be 0.4+/-0.2, slightly larger than the value of 0.22 evaluated by Boltzmann distribution at room temperature. The quantum yield of the Br2 elimination reaction is also measured to be 0.04+/-0.01. This work provides direct evidence to support molecular elimination occurring in the CF2Br2 photodissociation and proposes a plausible pathway with the aid of ab initio potential-energy calculations. CF2Br2 is excited probably to the 1B1 and 3B2 states at 248 nm. As the C-Br bond is elongated upon excitation, the coupling of the 1A'(1B1) state to the high vibrational levels of the ground state X 1A'(1A1) may be enhanced to facilitate the process of internal conversion. After transition, the highly vibrationally excited CF2Br2 feasibly surpasses a transition barrier prior to decomposition. According to the ab initio calculations, the transition state structure tends to correlate with the intermediate state CF2Br+Br(CF2Br...Br) and the products CF2+Br2. A sequential photodissociation pathway is thus favored. That is, a single C-Br bond breaks, and then the free-Br atom moves to form a Br-Br bond, followed by the Br2 elimination. The formed Br-Br bond distance in the transition state tends to approach equilibrium such that the Br2 fragment may be populated in cold vibrational distribution. Observation of a small vibrational population ratio of Br2(v=1)Br2(v=0) agrees with the proposed mechanism.  相似文献   

16.
DFT methods have been used to investigate the dependence of the geometry and energy order of the low energy states of [d(4)-eta(5)-CpMo(CO)(2)X] 16-electron complexes on X (X = halogen, CN, H and CH(3)). The calculations use a double-zeta plus polarization valence basis set on all atoms and utilize relativistic ECPs on Mo and the heavier halogens. In every case two singlet and two triplet electronic states have been considered and minimized at the B3LYP level. For X = Cl, additional calculations were carried out at the BPW91, CCSD(T), and CASSCF levels. In the C(s) point group, the singlet states are from the (1a')(2)(1a')(2) and (1a')(2)(2a')(2) configurations of the valence d(4) electrons of the metal, and are denoted (1)A'-a and (1)A'-b, respectively. The triplet species are for the lowest (3)A' and (3)A' states from the (1a')(2)(2a')(1)(1a')(1) and (1a')(2)(1a')(1)(2a')(1) d(4) configurations. For all substituents, the geometry of both the singlet and triplet states is found to distort substantially from the uniform 3-leg piano-stool structural motif, a behavior that can be related to Jahn-Teller effects. When X is a halogen or a methyl, (1)A'-b is predicted to be lower than (1)A'-a, while the reverse order of these two singlet states is calculated for X = H and CN. For all substituents (3)A' is substantially higher than (3)A'. In turn, the energy of (3)A' is calculated to be comparable to the lower singlet state of each complex. Attempts are made to rationalize some of these results using qualitative MO theory.  相似文献   

17.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

18.
Humbs W  Yersin H 《Inorganic chemistry》1996,35(8):2220-2228
Highly resolved emission, excitation, and resonantly line-narrowed spectra, as well as emission decay properties of [Rh(bpy-h(8))(n)(bpy-d(8))(3-n)](3+) (n = 0, 2, 3; bpy = 2,2'-bipyridine) doped into [Zn(bpy-h(8))(3)](ClO(4))(2) are presented for the first time. [Rh(bpy-h(8))(3)](3+) and [Rh(bpy-d(8))(3)](3+) exhibit one low-lying triplet T(1) at 22 757 +/- 1 and 22 818 +/- 1 cm(-1), respectively (blue shift 61 cm(-1)), while [Rh(bpy-h(8))(2)(bpy-d(8))](3+) has two low-lying triplets at 22 757 +/- 1 and 22 818 +/- 1 cm(-1). The well-resolved vibrational satellite structures show, that the equilibrium positions of the triplet and the singlet ground S(0) state are not very different and that the force constants in T(1) are mostly slightly smaller than in S(0). Moreover, the vibrational satellite structure is strongly dominated by vibrational ligand modes, which demonstrates the pipi character of the corresponding transition. However, the occurrence of several very weak vibrational modes of metal-ligand character displays a small influence of the metal ion. This is supported by the emission decay behavior. [Rh(bpy-h(8))(2)(bpy-d(8))](3+) exhibits an emission which is clearly assignable to the protonated ligand(s), even when the deuterated ligand is selectively excited. Obviously, an efficient intramolecular energy transfer from the deuterated to the protonated ligand(s) occurs, presumably mediated by the small Rh(3+) d-admixture. A so-called "dual emission" is not observed. Moreover, a series of spectroscopic properties of the lowest excited state of [Rh(bpy)(3)](3+) (energies of electronic origins, emission decay times, zero-field splittings, structures of vibrational satellites, etc.) is compared to properties of bpy, [Pt(bpy)(2)](2+), [Ru(bpy)(3)](2+), and [Os(bpy)(3)](2+). This comparison displays in a systematic way the increasing importance of the metal d and/or MLCT character for the lowest excited states and thus provides guidelines for an experimentally based classification. In particular, the lowest excited states of [Rh(bpy)(3)](3+) may be ascribed as being mainly of (3)pipi character confined to one ligand in contrast to the situation found for [Ru(bpy)(3)](2+) where these states are covalently delocalized over the whole complex.  相似文献   

19.
The excitation of the v(3) = 1 (σ(g)(+) C-C stretch) and the v(7) = 2 (π(g)(2) C≡C-C bend) modes in the A(2)Π(u) electronic state of diacetylene cations results in Renner-Teller (R-T) and Fermi interactions. The 3(0)(1) and 7(0)(2) vibronic bands in the A(2)Π(u)-X(2)Π(g) transition of HC(4)H(+) have been measured with rotational resolution using cavity ringdown spectroscopy in a supersonic slit jet discharge. The analysis yields T(00) = 20520.828(4) cm(-1), B' = 0.14047(2) cm(-1), and A' = -17.95(1) cm(-1) for the v(3) = 1 and T(00) = 20573.659(4) cm(-1), B' = 0.14018(3) cm(-1), and A' = -11.55(1) cm(-1) for the v(7) = 2 level in the A(2)Π(u) electronic state. A vibronic analysis has been carried out taking into consideration the R-T, spin-orbit, and Fermi resonance interactions between the ν(3) and ν(7) modes. The levels are fitted to the eigenvalues of an appropriate Hamiltonian matrix. This yields the vibrational frequencies ω(3)′ = 811.8 cm(-1) and ω(7)′ = 403.2 cm(-1), Renner parameter ε(7)′ = 0.065, Fermi coefficients W(1)′ = 10.3 cm(-1) and W(2)′ = 5.1 cm(-1), and spin-orbit interaction constant A(SO)′ = -31.1 cm(-1). A corresponding R-T analysis has been carried out for the X(2)Π(g) ground state of HC(4)H(+) using data available in the literature [Callomon, J. H. Can. J. Phys. 1956, 34, 1046]. This gives ω(3)" = 956.2 cm(-1), ω(7)" = 435.4 cm(-1), ε(7)" = 0.028, W(1)" = 7.2 cm(-1), W(2)" = 10.9 cm(-1), and A(SO)" = -33.3 cm(-1).  相似文献   

20.
Potential energy surfaces for all Born-Oppenheimer electronic states of IBr molecule correlating to the neutral (2)P ((2)P(3/2) and (2)P(1/2)) iodine and bromine are calculated for the first time. Electric dipole and polarizability curves (static and transition) are also determined. Calculations include scalar and spin-orbit relativistic effects within all-electron Douglas-Kroll two-component Hamiltonian. Electron correlation is treated with quasi-degenerate multi-reference second-order perturbation theory. Seven adiabatic electronic states (X (1)Sigma(+), A'(3)Pi(2), A (3)Pi(1), 1 (3)Pi(0-), B (3)Pi(0+), B'(3)Sigma, and 2 (3)Pi(0+)) exhibit significant covalent bonding, and can support vibrational states. Calculated spectroscopic parameters agree with experiment to better than 1000 cm(-1) (T(e)), 10 cm(-1) (omega(e)), and 0.05 Angstrom (r(e)). A new 1 (3)Pi(0-) state correlating to ground-state atoms is predicted at T(e) approximately 14 000 cm(-1), omega(e) approximately 80 cm(-1), and r(e) approximately 3.0 Angstrom. The second new state (2 (3)Pi(0+)) correlates to excited iodine atom, with T(e) approximately 20 000 cm(-1), omega(e) approximately 115 cm(-1), and r(e) approximately 3.3 Angstrom. Non-adiabatic coupling parameters are calculated for the four avoided crossings, which arise due to electronic spin-orbit interaction. Estimated parameters of the B (3)Pi(0+)/B'(3)Sigma crossing (R(c) approximately 3.32 Angstrom; V approximately 120 cm(-1)) agree with experimental values. The previously unsuspected 2 (3)Pi(0-)/1 (1)Sigma(-) crossing of two repulsive surfaces provides a new collisional deactivation channel for Br* atoms at relative velocities above 1000 m s(-1). Several repulsive states (including 1 (1)Pi(1) and 2 (3)Pi(1)) intersect the B/B' system near the avoided crossing point, and may affect dynamics of IBr in strong laser fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号