首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

2.
The work presented here is the first in a series of studies that use a molecular beam scattering technique to investigate the unimolecular reaction dynamics of C(4)H(7) radical isomers. Photodissociation of the halogenated precursor 2-bromo-1-butene at 193 nm under collisionless conditions produced 1-buten-2-yl radicals with a range of internal energies spanning the predicted barriers to the unimolecular reaction channels of the radical. Resolving the velocities of the stable C(4)H(7) radicals, as well as those of the products, allows for the identification of the energetic onset of each dissociation channel. The data show that radicals with at least 30.7 +/- 2 kcal/mol of internal energy underwent C-C fission to form allene + methyl, and radicals with at least 36.7 +/- 4 kcal/mol of internal energy underwent C-H fission to form H + 1-butyne and H + 1,2-butadiene; both of these observed barriers agree well with the G3//B3LYP calculations of Miller. HBr elimination from the parent molecule was observed, producing vibrationally excited 1-butyne and 1,2-butadiene. In the subsequent dissociation of these C(4)H(6) isomers, the major channel was C-C fission to form propargyl + methyl, and there is also evidence of at least one of the possible H + C(4)H(5) channels. A minor C-Br fission channel produces 1-buten-2-yl radicals in an excited electronic state and with low kinetic energy; these radicals exhibit markedly different dissociation dynamics than do the radicals produced in their ground electronic state.  相似文献   

3.
I use coupled-cluster theory and a modest basis set, aug-cc-pVDZ, to calculate structures and harmonic vibrational frequencies of local minima and transition states on the C(3)H(5)O potential energy surface. Accurate energies are computed using explicitly correlated coupled-cluster methods and a large basis set, cc-pVQZ-F12, to approach the one-particle basis set limit. My computations characterize eight additional stable radical structures on the global potential energy surface for this system. Additionally, this study encompasses many more isomerization and dissociation pathways, both between previously known intermediates and ones first characterized here. Analysis of the transition states and statistical transition-state theory results shows that energetically small barriers connect many of the alkenol and epoxide intermediates to the straight-chain alkoxy isomers, leading to significant branching to these alkoxy radical intermediates. Facile isomerization to these alkoxy intermediates is significant because the barrier heights leading to H + acrolein and HCO + C(2)H(4) product channels are energetically accessible even at low vibrational energies. The low dissociation barrier heights and loose transition states of these pathways result in unimolecular dissociation as opposed to isomerization to a different C(3)H(5)O intermediate.  相似文献   

4.
Time- and frequency-resolved photoionization of the hydrogen atom product from a jet-cooled electronically excited 2-methylallyl radical, C4H7, provides information on the dissociation dynamics. The measured dissociation rates and kinetic energy release of 2-methylallyl and its isotopologue CD3C3H4 combined with high level ab initio calculations suggests unimolecular dissociation with methylenecyclopropane and hydrogen as the major C-H bond fission channel with no evidence for nonstatistical behavior in dissociation. Other possible dissociation and isomerization pathways are discussed based on the results of the coupled-cluster ab initio calculations.  相似文献   

5.
Ab initio calculations at the level of CBS-QB3 theory have been performed to investigate the potential energy surface for the reaction of benzyl radical with molecular oxygen. The reaction is shown to proceed with an exothermic barrierless addition of O2 to the benzyl radical to form benzylperoxy radical (2). The benzylperoxy radical was found to have three dissociation channels, giving benzaldehyde (4) and OH radical through the four-centered transition states (channel B), giving benzyl hydroperoxide (5) through the six-centered transition states (channel C), and giving O2-adduct (8) through the four-centered transition states (channel D), in addition to the backward reaction forming benzyl radical and O2 (channel E). The master equation analysis suggested that the rate constant for the backward reaction (E) of C6H5CH2OO-->C6H5CH2+O2 was several orders of magnitude higher that those for the product dissociation channels (B-D) for temperatures 300-1500 K and pressures 0.1-10 atm; therefore, it was also suggested that the dissociation of benzylperoxy radicals proceeded with the partial equilibrium between the benzyl+O2 and benzylperoxy radicals. The rate constants for product channels B-D were also calculated, and it was found that the rate constant for each dissociation reaction pathway was higher in the order of channel D>channel C>channel B for all temperature and pressure ranges. The rate constants for the reaction of benzyl+O2 were computed from the equilibrium constant and from the predicted rate constant for the backward reaction (E). Finally, the product branching ratios forming CH2O molecules and OH radicals formed by the reaction of benzyl+O2 were also calculated using the stationary state approximation for each reaction intermediate.  相似文献   

6.
The photodissociation dynamics of the ethoxy radical (CH3CH2O) have been studied at energies from 5.17 to 5.96 eV using photofragment coincidence imaging. The upper state of the electronic transition excited at these energies is assigned to the C2A'state on the basis of electronic structure calculations. Fragment mass distributions show two photodissociation channels, OH + C2H4 and CH3 + CH2O. The presence of an additional photodissociation channel, identified as D + C2D4O, is revealed in time-of-flight distributions from the photodissociation of CD3CD2O. The product branching ratios and fragment translational energy distributions for all of the observed mass channels are nonstatistical. Moreover, the significant yield of OH + C2H4 product suggests that the mechanism for this channel involves isomerization on the excited-state surface. Photodissociation at a much lower yield is seen following excitation at 3.91 eV, corresponding to a vibronic band of the B2A' <-- X2A' transition.  相似文献   

7.
We investigated the dynamics of isomerization and multi-channel dissociation of propenal (CH(2)CHCHO), methyl ketene (CH(3)CHCO), hydroxyl propadiene (CH(2)CH(2)CHOH), and hydroxyl cyclopropene (cyclic-C(3)H(3)-OH) in the ground potential-energy surface using quantum-chemical calculations. Optimized structures and vibrational frequencies of molecular species were computed with method B3LYP∕6-311G(d,p). Total energies of molecules at optimized structures were computed at the CCSD(T)∕6-311+G(3df,2p) level of theory. We established the potential-energy surface for decomposition to CH(2)CHCO + H, CH(2)CH + HCO, CH(2)CH(2)∕CH(3)CH + CO, CHCH∕CH(2)C + H(2)CO, CHCCHO∕CH(2)CCO + H(2), CHCH + CO + H(2), CH(3) + HCCO, CH(2)CCH + OH, and CH(2)CC∕cyclic-C(3)H(2) + H(2)O. Microcanonical rate coefficients of various reactions of trans-propenal with internal energies 148 and 182 kcal mol(-1) were calculated using Rice-Ramsperger-Kassel-Marcus and Variational transition state theories. Product branching ratios were derivable using numerical integration of kinetic master equations and the steady-state approximation. The concerted three-body dissociation of trans-propenal to fragments C(2)H(2) + CO + H(2) is the prevailing channel in present calculations. In contrast, C(3)H(3)O + H, C(2)H(3) + HCO and C(2)H(4) + CO were identified as major channels in the photolysis of trans-propenal. The discrepancy between calculations and experiments in product branching ratios indicates that the three major photodissociation channels occur mainly on an excited potential-energy surface whereas the other channels occur mainly on the ground potential-energy surface. This work provides profound insight in the mechanisms of isomerization and multichannel dissociation of the system C(3)H(4)O.  相似文献   

8.
The unimolecular dissociation of isopropyl chloride cation has been investigated using mass-analyzed ion kinetic energy spectrometry. The C3H6*+ ion was the only product ion in the metastable dissociation. The kinetic energy release distribution for the HCl loss was determined. Ab initio molecular orbital calculations were performed at the MP2/6-311++G(d,p) level together with single point energy calculations at the QCSID(T)/6-311++G(2d,2p) level. The calculations show that the molecular ion rearranges to an ion-dipole complex prior to loss of HCl via a transition state containing a four-membered ring. The rearrangement involves H atom transfer. On the basis of the potential energy surface obtained for the loss of HCl and Cl*, the rate constants were calculated by transition-state statistical theories with considering tunneling effect. From the calculated result, it is proposed that the observed HCl loss would occur via tunneling through the barrier for isomerization to the ion-dipole complex, CH3CHCH2*+...HCl.  相似文献   

9.
Photodissociation dynamics of benzyl alcohol, C(6)H(5)CH(2)OH and C(6)H(5)CD(2)OH, in a molecular beam was investigated at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed, including OH elimination and H(2)O elimination from the ground electronic state, H atom elimination (from OH functional group), and CH(2)OH elimination from the triplet state. The dissociation rate on the ground state was found to be 7.7 × 10(6) s(-1). Comparison to the potential energy surfaces from ab initio calculations, dissociation rate, and branching ratio from Rice-Ramsperger-Kassel-Marcus calculations were made.  相似文献   

10.
We report quasiclassical trajectory calculations of the dynamics of the two reaction channels of formaldehyde dissociation on a global ab initio potential energy surface: the molecular channel H(2)CO-->H(2) + CO and the radical H(2)CO-->H + HCO. For the molecular channel, it is confirmed that above the threshold of the radical channel a second, intramolecular hydrogen abstraction pathway is opened to produce CO with low rotation and vibrationally hot H(2). The low-j(CO) and high-nu(H(2) ) products from the second pathway increase with the total energy. The competition between the molecular and radical pathways is also studied. It shows that the branching ratio of the molecular products decreases with increasing energy, while the branching ratio of the radical products increases. The results agree well with very recent velocity-map imaging experiments of Suits and co-workers and solves a mystery first posed by Moore and co-workers. For the radical channel, we present the translational energy distributions and HCO rotation distributions at various energies. There is mixed agreement with the experiments of Wittig and co-workers, and this provides an indirect confirmation of their speculation that the triplet surface plays a role in the formation of the radical products.  相似文献   

11.
This work is a study of the competition between the two unimolecular reaction channels available to the vinoxy radical (CH(2)CHO), C-H fission to form H+ketene, and isomerization to the acetyl radical (CH(3)CO) followed by C-C fission to form CH(3) + CO. Chloroacetaldehyde (CH(2)ClCHO) was used as a photolytic precursor to the vinoxy radical in its ground state; photodissociation of chloroacetaldehyde at 193 nm produces vinoxy radicals with internal energies spanning the G3//B3LYP calculated barriers to the two available unimolecular reaction channels. The onset of the CH(3) + CO channel, via isomerization to the acetyl radical, was found to occur at an internal energy of 41 +/- 2 kcal/mol, agreeing well with our calculated isomerization barrier of 40.8 kcal/mol. Branching to the H+ketene channel was too small to be detected; we conclude that the branching to the H+ketene channel must be at least a factor of 200 lower than what is predicted by a RRKM analysis based on our electronic structure calculations. This dramatic result may be explained in part by the presence of a conical intersection at planar geometries along the reaction coordinate leading to H+ketene, which results in electronically nonadiabatic recrossing of the transition state.  相似文献   

12.
We review the photodissociation dynamics of formaldehyde with an emphasis on recent calculations that make use of a global ab initio-based potential energy surface for the S(0) state. These calculations together with recent experiments reveal striking departures from conventional transition state theory for the formation of the molecular products H(2) + CO. The evidence for this departure is reviewed in detail by examining properties of the new potential surface and results of quasiclassical trajectory dynamics calculations using this surface. We also review very recent work on the dynamics governing the formation of radical products, H + HCO. These products can be formed on the T(1) surface as well as the S(0) one, and we present some results contrasting the dynamics on these two surfaces. This work makes use of a new semi-global ab initio-based T(1) potential energy surface.  相似文献   

13.
Ab initio CCSD(T) calculations of intermediates and transition states on the singlet and triplet C3H2 potential energy surfaces extrapolated to the complete basis set limit are combined with statistical computations of energy-dependent rate constants of the C(3P)+C2H2 reaction under crossed molecular beam conditions. Rice-Ramsperger-Kassel-Marcus theory is applied for isomerization and dissociation steps within the same multiplicity and radiationless transition and nonadiabatic transition state theories are used for singlet-triplet intersystem crossing rates. The calculated rate constants are utilized to predict product branching ratios. The results demonstrate that, in qualitative agreement with available experimental data, c-C3H+H and C3+H2 are the most probable products at low collision energies, whereas l-C3H+H becomes dominant at higher Ec above approximately 25 kJ/mol.  相似文献   

14.
Dimethyl ether is under consideration as an alternative diesel fuel. Its combustion chemistry is as yet ill-characterized. Here we use Born-Oppenheimer molecular dynamics (BOMD) based on DFT-B3LYP forces to investigate the short-time dynamics of selected features of the low-temperature dimethyl ether (DME) oxidation potential energy surface. Along the chain propagation pathway, we run BOMD simulations from the transition state involving the decomposition of (*)CH(2)OCH(2)OOH to two CH(2)=O and an (*)OH radical. We predict that formaldehyde C-O stretch overtones are excited, consistent with laser photolysis experiments. We also predict that O-H overtones are excited for the (*)OH formed from (*)CH(2)OCH(2)OOH dissociation. We also investigate short-time dynamics involved in chain branching. First, we examine the isomerization transition state of (*)OOCH(2)OCH(2)OOH --> HOOCH(2)OCHOOH. The latter species is predicted to be a short-lived metastable radical that decomposes within 500 fs to hydroperoxymethyl formate (HPMF; HOOCH(2)OC(=O)H) and the first (*)OH of chain branching. The dissociation of HOOCH(2)OCHOOH exhibits non-RRKM behavior in its lifetime profile, which may be due to conformational constraints or slow intramolecular vibrational energy transfer (IVR) from the nascent H-O bond to the opposite end of the radical, where O-O scission occurs to form HPMF and (*)OH. In a few trajectories, we see HOOCH(2)OCHOOH recross back to (*)OOCH(2)OCH(2)OOH because the isomerization is endothermic, with only an 8 kcal/mol barrier to recrossing. Therefore, some inhibition of chain-branching may be due to recrossing. Second, trajectories run from the transition state leading to the direct decomposition of HPMF (an important source of the second (*)OH radical in chain branching) to HCO, (*)OH, and HC(=O)OH show that these products can recombine to form many other possible products. These products include CH(2)OO + HC(=O)OH, H(2)O + CO + HC(=O)OH, HC(=O)OH + HC(=O)OH, and HC(=O)C(=O)H + H(2)O, which (save CH(2)OO + HC(=O)OH) are all more thermodynamically stable than the original HCO + (*)OH + HC(=O)OH products. Moreover, the multitude of extra products suggest that standard statistical rate theories cannot completely describe the reaction kinetics of significantly oxygenated compounds such as HPMF. These secondary products consume the second (*)OH required for explosive combustion, suggesting an inhibition of DME fuel combustion is likely.  相似文献   

15.
These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(2P1/2):Cl(2P3/2) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C2H3, H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.  相似文献   

16.
The short-time nuclear dynamics of Cu(H(2)O) is investigated using femtosecond photodetachment-photoionization spectroscopy and time-dependent quantum wave packet calculations. The Cu(H(2)O) dynamics is initiated in the electronic ground state of the complex by electron photodetachment from the Cu(-)(H(2)O) complex, where hydrogen atoms are oriented toward Cu. Several time-resolved resonant multiphoton ionization schemes are used to probe the ensuing reorientation and dissociation. Immediately following photodetachment, the neutral complex is far from its minimum energy geometry and possesses an internal energy comparable to the Cu-H(2)O dissociation energy and undergoes both large-amplitude H(2)O motion and dissociation. Dissociation is observed to occur on three distinct time scales: 0.6, 8, and 100 ps. These results are compared to the results of time-dependent J=0 wave packet calculations, propagating the initial anion vibrational wave functions on the ground-state potential of the neutral complex. An excellent agreement is obtained between the experimental results and the ionization signals derived from the calculated probability amplitudes. Related experiments and calculations are carried out on the Cu(D(2)O) complex, with results very similar to those of Cu(H(2)O).  相似文献   

17.
The photodissociation dynamics of the tert-butyl radical (t-C(4)H(9)) were investigated using photofragment translational spectroscopy. The tert-butyl radical was produced from flash pyrolysis of azo-tert-butane and dissociated at 248 nm. Two distinct channels of approximately equal importance were identified: dissociation to H + 2-methylpropene, and CH(3) + dimethylcarbene. Neither the translational energy distributions that describe these two channels nor the product branching ratio are consistent with statistical dissociation on the ground state, and instead favor a mechanism taking place on excited state surfaces.  相似文献   

18.
Full-dimensional, three-state, surface hopping calculations of the photodissociation dynamics of formaldehyde are reported on ab initio potential energy surfaces (PESs) for electronic states S(1), T(1), and S(0). This is the first such study initiated on S(1) with ab initio-calculated spin-orbit couplings among the three states. We employ previous PESs for S(0) and T(1), and a new PES for S(1), which we describe here, as well as new spin-orbit couplings. The time-dependent electronic state populations and the branching ratio of radical products produced from S(0) and T(1) states and that of total radical products and molecular products at three total energies are calculated. Details of the surface hopping dynamics are described, and a novel pathway for isomerization on T(1) via S(0) is reported. Final translational energy distributions of H + HCO products from S(0) and T(1) are also reported as well as the translational energy distribution and final rovibrational distributions of H(2) products from the molecular channel. The present results are compared to previous trajectory calculations initiated from the global minimum of S(0). The roaming pathway leading to low rotational distribution of CO and high vibrational population of H(2) is observed in the present calculations.  相似文献   

19.
We report a new approach to investigating the mechanisms of fast peptide cation-radical dissociations based on an analysis of time-resolved reaction progress by Ehrenfest dynamics, as applied to an Ala-Arg cation-radical model system. Calculations of stationary points on the ground electronic state that were carried out with effective CCSD(T)/6-311++G(3df,2p) could not explain the experimental branching ratios for loss of a hydrogen atom, ammonia, and N–Cα bond dissociation in (AR + 2H)+●. The Ehrenfest dynamics results indicate that the ground and low-lying excited electronic states of (AR + 2H)+● follow different reaction courses in the first 330 femtoseconds after electron attachment. The ground (X) state undergoes competing loss of N-terminal ammonia and isomerization to an aminoketyl radical intermediate that depend on the vibrational energy of the charge-reduced ion. The A and B excited states involve electron capture in the Arg guanidine and carboxyl groups and are non-reactive on the short time scale. The C state is dissociative and progresses to a fast loss of an H atom from the Arg guanidine group. Analogous results were obtained by using the B3LYP and CAM-B3LYP density functionals for the excited state dynamics and including the universal M06-2X functional for ground electronic state calculations. The results of this Ehrenfest dynamics study indicate that reaction pathway branching into the various dissociation channels occurs in the early stages of electron attachment and is primarily determined by the electronic states being accessed. This represents a new paradigm for the discussion of peptide dissociations in electron based methods of mass spectrometry.  相似文献   

20.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号