首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We remove the nonuniqueness of the embedding potential that exists in most previous quantum mechanical embedding schemes by letting the environment and embedded region share a common embedding (interaction) potential. To efficiently solve for the embedding potential, an optimized effective potential method is derived. This embedding potential, which eschews use of approximate kinetic energy density functionals, is then used to describe the environment while a correlated wavefunction (CW) treatment of the embedded region is employed. We first demonstrate the accuracy of this new embedded CW (ECW) method by calculating the van der Waals binding energy curve between a hydrogen molecule and a hydrogen chain. We then examine the prototypical adsorption of CO on a metal surface, here the Cu(111) surface. In addition to obtaining proper site ordering (top site most stable) and binding energies within this theory, the ECW exhibits dramatic changes in the p-character of the CO 4σ and 5σ orbitals upon adsorption that agree very well with x-ray emission spectra, providing further validation of the theory. Finally, we generalize our embedding theory to spin-polarized quantum systems and discuss the connection between our theory and partition density functional theory.  相似文献   

2.
Density functional theory (DFT) provides a formally exact framework for quantum embedding. The appearance of nonadditive kinetic energy contributions in this context poses significant challenges, but using optimized effective potential (OEP) methods, various groups have devised DFT-in-DFT methods that are equivalent to Kohn-Sham (KS) theory on the whole system. This being the case, we note that a very considerable simplification arises from doing KS theory instead. We then describe embedding schemes that enforce Pauli exclusion via a projection technique, completely avoiding numerically demanding OEP calculations. Illustrative applications are presented using DFT-in-DFT, wave-function-in-DFT, and wave-function-in-Hartree-Fock embedding, and using an embedded many-body expansion.  相似文献   

3.
We have reinvestigated the behavior of a Cu(111) electrode in pure and cinchonidine containing aqueous 0.1 M HClO4 solution by cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (STM). In contrast to previous publications by Wan et al. (Langmuir 2000, 19, 1958-1962 and references cited therein) on Cu(111) in pure 0.1 M HClO4 which claimed an adsorbate-free Cu(111) surface in the entire potential range, we have found a highly ordered hexagonal adsorbate structure with a (4 x 4) unit cell, which is stable in the potential range from hydrogen evolution at -350 to -150 mV (RHE). The adsorbate-free (1 x 1) Cu(111) surface is only visible in a fairly small potential range from -150 to +50 mV. A disordered surface structure is formed at more positive potentials which is interpreted by adsorption of an oxygen-containing species. Furthermore, the formation of a highly ordered cinchonidine adlayer on Cu(111) in 0.1 M HClO4 as reported by Wan et al. (J. Am. Chem. Soc. 2002, 124, 14300-14301) could not be reproduced here. In fact, the similarity of all structures reported by Wan et al. for a great variety of different organic adlayers on Cu(111) in HClO4 solution including cinchonidine with the (4 x 4) superstructure found here already in pure HClO4 solution (i.e., without organic solute) casts serious doubts on the validity of those previous results by Wan et al. in general.  相似文献   

4.
5.
用基于密度泛函理论的第一性原理方法研究了Cu团簇(Cux, x=1-4)在CeO2(111)表面的吸附. 研究发现当团簇比较小时(x=2, 3), 倾向于平铺表面; 当x=4时, Cu团簇在CeO2(111)表面以三维的四面体结构吸附较为稳定, 从Cu 3d到Ce 4f的电荷转移使Cu团簇带正电荷. 由二维的菱形结构到三维的四面体结构的转变势垒为1.05 eV, 并且其中一个Cu原子直接迁移到另外三个Cu原子的空位顶部的转变路径比较有利. 在Cu团簇与CeO2的相互作用过程中, Cu-O和Cu-Cu相互作用的竞争最终决定了Cu团簇在CeO2上的形貌. 这种CeO2(111)负载的带正电的三维Cu团簇将对水分解, 进而对水煤气反应具有高的催化活性.  相似文献   

6.
Structural and optical properties of isolated perylene‐3,4,9,10‐tetracarboxylic acid dianhydride molecules adsorbed on (100) oriented NaCl and KCl surfaces were studied theoretically to analyze the recently observed red‐shift of the optical excitation spectrum after adsorption (Müller et al., Phys. Rev. B, 2011, 83, 241203; Paulheim et al. Phys. Chem. Chem. Phys., 2013, 15, 4906). The ground‐state structures were obtained by periodic dispersion‐corrected density functional theory (DFT) calculations. For the excited‐state calculations, nonperiodic time‐dependent DFT methods were applied for a cluster model embedded in point charges. The range‐separated hybrid functional CAM‐B3LYP was used. Correlation‐consistent basis sets were used and the calculated excitation energies were extrapolated to the complete basis set limit. The shift of the first optical excitation energy was analyzed in terms of electronic and geometric contributions. It was found that both the distortion of the molecule due to the interaction with the surface and the electrostatic potential of the surface play an important role. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The hydrogen bond interaction between water molecules adsorbed on a Pd <111> surface, a nucleator of two dimensional ordered water arrays at low temperatures, is studied using density functional theory calculations. The role of the exchange and correlation density functional in the characterization of both the hydrogen bond and the water-metal interaction is analyzed in detail. The effect of non local correlations using the van der Waals density functional proposed by Dion et al. [M. Dion, H. Rydberg, E. Schr?der, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett., 2004, 92, 246401] is also studied. We conclude that the choice of this potential is critical in determining the cohesive energy of water-metal complexes. We show that the interaction between water molecules and the metal surface is as sensitive to the density functional choice as hydrogen bonds between water molecules are. The reason for this is that the two interactions are very similar in nature. We make a detailed analogy between the water-water bond in the water dimer and the water-Pd bond at the Pd <111> surface. Our results show a strong similarity between these two interactions and based on this we describe the water-Pd bond as a hydrogen bond type interaction. These results demonstrate the need to obtain an accurate and reliable representation of the hydrogen bond interaction in density functional theory.  相似文献   

8.
9.
The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).  相似文献   

10.
Low-energy isomers of Ag(N) clusters are studied within gradient-corrected density functional theory over the size range of N = 9-20. The candidate conformations are drawn from an extensive structural database created in a recent exploration of Cu(N) clusters [M. Yang et al., J. Chem. Phys. 124, 24308 (2006)]. Layered configurations dominate the list of the lowest-energy isomers of Ag(N) for N < 16. The most stable structures for N > 16 are compact with quasispherical shapes. The size-driven shape evolution is similar to that found earlier for Na(N) and Cu(N). The shape change has a pronounced effect on the cluster cohesive energies, ionization potentials, and polarizabilities. The properties computed for the most stable isomers of Ag(N) are in good agreement with the available experimental data.  相似文献   

11.
In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method.  相似文献   

12.
Calculations of charged systems in periodic boundary conditions (PBC) are problematic because there are spurious interactions between the charges in different periodic images that can affect the physical picture. In addition, the intuitive limit of Coulomb interactions decaying to zero as the interacting charges are placed at infinite separation no longer applies, and for example total energies become undefined. Leveraging subsystem density functional theory (also known as density embedding) we define an impurity model that embeds a finite neutral or charged subsystem within an extended (infinite) surrounding subsystem. The combination of the impurity model and a consistent choice of the Coulomb reference provides us with an algorithm for evaluating the ionization potential (IP) in extended systems. We demonstrate our approach in a pilot calculation of the IP of liquid water, based on a configuration from a prior ab initio molecular dynamics (AIMD) simulation of liquid water (Genova et al., J. Chem. Phys. 2016, 144, 234105). The calculations with the impurity model capture the broadening on the ionization energies introduced by the interactions between the water molecules. Furthermore, the calculated average IP value (10.5 eV) compare favorably to experiments (9.9-10.06 eV) and very recent simulations based on the GW approximation (10.55 eV), while at the same time outperforming density embedding calculations carried out with a naïve handling of the electrostatic interactions (about 7 eV).  相似文献   

13.
利用密度泛函方法对丙烯腈在Cu(111)面上不同吸附位的吸附状态进行了理论研究. 计算结果表明, 丙烯腈分子通过端位N原子立式吸附在金属铜表面为弱化学吸附, 其中桥位为较佳吸附位, 结合能为-40.16 kJ/mol; 丙烯腈分子和金属铜之间发生了电荷转移, N原子的孤对电子与金属形成σ共价键; 对丙烯腈分子结构变化进行了NBO分析, 解释了丙烯腈分子吸附后被活化的原因.  相似文献   

14.
We analyze the total energy evaluation in the Strutinsky shell correction method (SCM) of Ullmo et al. [Phys. Rev. B 63, 125339 (2001)], where a series expansion of the total energy is developed based on perturbation theory. In agreement with Yannouleas and Landman [Phys. Rev. B 48, 8376 (1993)], we also identify the first-order SCM result to be the Harris functional [Phys. Rev. B 31, 1770 (1985)]. Further, we find that the second-order correction of the SCM turns out to be the second-order error of the Harris functional, which involves the a priori unknown exact Kohn-Sham (KS) density, rho(KS)(r). Interestingly, the approximation of rho(KS)(r) by rho(out)(r), the output density of the SCM calculation, in the evaluation of the second-order correction leads to the Hohenberg-Kohn-Sham functional. By invoking an auxiliary system in the framework of orbital-free density functional theory, Ullmo et al. designed a scheme to approximate rho(KS)(r), but with several drawbacks. An alternative is designed to utilize the optimal density from a high-quality density mixing method to approximate rho(KS)(r). Our new scheme allows more accurate and complex kinetic energy density functionals and nonlocal pseudopotentials to be employed in the SCM. The efficiency of our new scheme is demonstrated in atomistic calculations on the cubic diamond Si and face-centered-cubic Ag systems.  相似文献   

15.
We study the dissociative adsorption of N(2) on W(100) and W(110) by means of density functional theory and classical dynamics. Working with a full six-dimensional adiabatic potential energy surface (PES), we find that the theoretical results of the dynamical problem strongly depend on the choice of approximate exchange-correlation functional for the determination of the PES. We consider the Perdew-Wang-91 [Perdew et al., Phys. Rev. B 46, 6671 (1992)] and Perdew-Burke-Ernzerhof (RPBE) [Hammer et al., Phys. Rev. B 59, 7413 (1999)] functionals and carry out a systematic comparison between the dynamics determined by the respective PESs. Even though it has been shown in earlier works that the RPBE may provide better values for the chemisorption energies, our study brings evidence that it gives rise to a PES with excessive repulsion far from the surface.  相似文献   

16.
Experimental studies have reported that glycine is adsorbed on the Cu(110) and Cu(100) surfaces in its deprotonated form at room temperature, but in its zwitterionic form on Pd(111) and Pt(111). In contrast, recent density functional theory (DFT) calculations indicated that the deprotonated molecules are thermodynamically favored on Cu(110), Cu(100), and Pd(111). To explore the source of this disagreement, we have tested three possible hypotheses. Using DFT calculations, we first show that the kinetic barrier for the deprotonation reaction of glycine on Pd(111) is larger than on Cu(110) or Cu(100). We then report that the presence of excess hydrogen would have little influence on the experimentally observed results, especially for Pd(111). Lastly, we perform Monte Carlo simulations to demonstrate that the aggregates of zwitterionic species on Pt(111) are energetically preferred to those of neutral species. Our results strongly suggest that the formation of aggregates with relatively large numbers of adsorbed molecules is favored under experimentally relevant conditions and that the adsorbate-adsorbate interactions in these aggregates stabilize the zwitterionic species.  相似文献   

17.
Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.  相似文献   

18.
A simple picture of the hydrogen dissociation/associative desorption dynamics on Cu(111) emerges from a two-parameter, full dimensionality microcanonical unimolecular rate theory (MURT) model of the gas-surface reactivity. Vibrational frequencies for the reactive transition state were taken from density functional theory calculations of a six-dimensional potential energy surface [Hammer et al., Phys. Rev. Lett. 73, 1400 (1994)]. The two remaining parameters required by the MURT were fixed by simulation of experiments. These parameters are the dissociation threshold energy, E(0)=79 kJmol, and the number of surface oscillators involved in the localized H(2)Cu(111) collision complex, s=1. The two-parameter MURT quantitatively predicts much of the varied behavior observed for the H(2) and D(2)Cu(111) reactive systems, including the temperature-dependent associative desorption angular distributions, mean translational energies of the associatively desorbing hydrogen as a function of rovibrational eigenstate, etc. The divergence of the statistical theory's predictions from experimental results at low rotational quantum numbers, J < or approximately 5, suggests that either (i) rotational steering is important to the dissociation dynamics at low J, an effect that washes out at high J, or (ii) molecular rotation is approximately a spectator degree of freedom to the dissociation dynamics for these low J states, the states that dominate the thermal reactivity. Surface vibrations are predicted to provide approximately 30% of the energy required to surmount the activation barrier to H(2) dissociation under thermal equilibrium conditions. The MURT with s=1 is used to analytically confirm the experimental finding that partial differential "E(a)(T(s))" partial differential E(t)= -1 for eigenstate-resolved dissociative sticking at translational energies E(t)相似文献   

19.
We discuss possibilities and challenges for describing correlated electron and nuclear dynamics within a surface-hopping framework using time-dependent density functional theory (TDDFT) for the electron dynamics. We discuss the recent surface-hopping method proposed by Craig et al. [Phys. Rev. Lett. 95, 163001 (2005)] that is based on Kohn-Sham potential energy surfaces. Limitations of this approach arise due to the Kohn-Sham surfaces generally having different gradients than the true TDDFT-corrected ones. Two mechanisms of the linear response procedure cause this effect: we illustrate these with examples.  相似文献   

20.
Magnetic properties of the TTF-CA molecular crystal below the neutral to ionic transition temperature are studied using the embedded cluster approach in combination with density functional theory. The calculated values of the Heisenberg exchange integral between the neighboring TTF and CA molecules stacked along the crystallographic axis a suggest that the ionic phase of the TTF-CA can be described as an alternating antiferromagnetic spin-1/2 Heisenberg chain with the exchange integral J = 1124 cm(-1) and the alternation parameter δ = 0.46. Although the combination of ferroelectricity of the ionic phase with the antiferromagnetic ordering renders TTF-CA multiferroic (as predicted theoretically in G. Giovannetti et al., Phys. Rev. Lett., 2009, 103, 266401), the large value of the alternation parameter should result in a nonmagnetic ground state of this phase. The dependence of the magnetic coupling parameters on the crystal structure is studied and the implications for experimental observation of magnetic properties of TTF-CA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号