首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the structures and stabilities of Al(13)I(n) (-)(n = 1-12) clusters at the density-functional level of theory. Unlike the case of Al(13)I(-), the Al(13)I(n) (-)(n=2-12) clusters do not have an Al(13) (-) core electronically. Population analysis shows that a significant charge transfer occurs from the Al cluster to the I atoms, where the populations for Al(13) vary from -0.48(Al(13)I(2) (-)) to +0.97(Al(13)I(12) (-)). Moreover, the shape of Al(13) moieties in the Al(13)I(n) (-) (n > or = 6 or 7) clusters is significantly distorted from the structure of Al(13) (-), an icosahedron, and is a "cagelike" form, which can be explained by both electronic and steric reasons. Our theoretical results are in good agreement with the experimental observations of Bergeron et al. [Science 307, 231 (2005)].  相似文献   

2.
Using density functional theory (DFT), we have systematically calculated the equilibrium geometries, electronic structure, and electron detachment energies of Al(BH(4))(n=1→4) and Al(BF(4))(n=1→4) at the B3LYP/6-311+G(2d,p) level of theory. The electron affinities of Al(BH(4))(n) not only exhibit odd-even alternation, just as seen in (BH(4))(n), but also, for n = 3 and 4, show a remarkable behavior: whereas the electron affinities of BH(3) and BH(4) are, respectively, 0.06 and 3.17 eV, those of Al(BH(4))(3) and Al(BH(4))(4) are 0.71 and 5.56 eV. Results where H is replaced by F are also very different. The electron affinities of BF(3) and BF(4) are, respectively, -0.44 and +6.86 eV, and those of Al(BF(4))(3) and Al(BF(4))(4) are 1.82 and 8.86 eV. The results demonstrate not only marked difference when H is replaced by F but also substantially enhanced electron affinities by almost 2 eV when BH(4) and BF(4) units are allowed decorate a metal atom, confirming the recently observed hyperhalogen behavior of superhalogen building blocks.  相似文献   

3.
The structural and energetic characteristics of AcF n (3 ? n)+ complexes (n = 1?7) have been calculated by the ab initio RHF and MP2 methods.  相似文献   

4.
Using density functional theory (DFT) method with 6-31G* basis set, we have carried out the optimizing calculation of geometry, vibrational frequency and thermodynamical stability for(AIN)n+ and (AIN)n- (n =1-15) clusters. Moreover, their ionic potential (IP) and electron affinity(EA) were discussed. The results show that the electrical charge condition of the cluster has a relatively great impact on the structure of the cluster and with the increase of n, this kind of impactis reduced gradually. There are no AI-AI and N-N bonds in the stable structure of (AIN)n+ or (AIN)n-, and the AI-N bond is the sole bond type. The magic number regularity of (AIN)n+, and (AIN)n- is consistent with that for (AIN)n, indicating that the structure with even n such as 2, 4,6, … is more stable. In addition, (AIN)10 has the maximal ionization power (9.14 eV) and the minimal electron affinity energy (0.19 eV), which manifests that (AIN)10 is more stable than other clusters.  相似文献   

5.
The structure, stability and electronic property of the AuGe n (n = 2–13) clusters with different spin configurations are systematically investigated with density-functional theory approach at UB3LYP/LanL2DZ level. In examining the lowest energy structures, it is found that the growth behaviors for the small-sized AuGe n (n = 2–9) clusters and relatively large-sized AuGe n (n = 10–13) clusters are different. As the number of Ge atom increases, the Au atom would gradually move from convex to surface and to interior sites. For the most stable structures of AuGe n (n = 10–13) clusters, the Au atom would be completely surrounded by the Ge atoms to form Au-encapsulated Ge n cages. Natural population analysis shows that the charges always transfer from the Au atom to the Ge n framework except for the AuGe2 cluster. This indicates that the Au atom acts as electron donor even the 5d orbitals of the Au atom are not significantly involved in chemical bonding. The analyses of the average atomic binding energies as well as the dissociation energies and the second-order differences of total energy show that the AuGe n clusters with n = 5, 9 and 12 are more stable than their neighboring ones, in which the bicapped pentagonal prism AuGe12 in D 2d symmetry is most stable. The highest occupied molecular orbital–lowest unoccupied molecular orbital gaps are explored to be in the region of semiconductors and the more stable clusters have slightly smaller gaps. It could be expected that the stable clusters might be considered as the novel building blocks in practical applications, e.g., the cluster-assembled semiconductors or optoelectronic material.  相似文献   

6.
We present the structural models for the o-phthalaldehyde (OP) molecular lines on the H-terminated Si(100) surface which were recently observed by scanning tunnelling microscopy. Our first-principles density-functional theory calculations show that the formation of OP lines is not only kinetically more facile but also thermodynamically more stable than those of previously reported alkene lines.  相似文献   

7.
The formation of host–guest complexes of fluoroquinolones (FQs), such as levofloxacin, ofloxacin, and moxifloxacin with (2-hydroxypropyl)-β-cyclodextrin (HP–β–CD) was studied by spectroscopic methods. The stoichiometry and dissociation constants of the inclusion complexes were determined. The formation of complexes of FQs with HP–β–CD was confirmed by the solubility studies, the UV and FTIR spectra and the equilibrium dialysis. The use of the complex of levofloxacin with HP–β–CD leads to the prolonged release of the former observed in the dialysis experiments. The formation of inclusion complexes makes it possible to increase the solubility of FQs by two to five times. The research may provide a basis for the development of new FQ-containing drugs involving HP–β–CD as a nanocarrier system.  相似文献   

8.
The stable acetone molecule clusters have been studied by using Beeke's threeparameter(B3LYP)density functional theory(DFT)with standard 6-31G(d)basis set.The calculated results show that the optimal structures of acetone clustets are cyclic and the cycles become larger and larger with the increase of cluster size.The strongest vibration peaks for neutral clusters are C=O stretching vibration.The C=O stretching peaks of cyclic acetone clusters split into double ones when n≥3,the frequencies are red-shifted and corresponding intensities increase with the increase of cluster size.  相似文献   

9.
A number of configurations of NLi n Na2 (n = 1–4) species were optimized using the B3LYP–density functional theory method; the 6-31G* basis set was used in this calculation. In order to study all possible dissociation energies, some related species such as NLi2Na, NLi n (n = 1–4), Li n (n = 1, 2) and Na n (n = 1, 2) were also considered. Optimizations of these species were followed by fundamental frequency calculations at the same level. Global minima of these species were shown to adopt C 2 v (NLi4Na2, NLi2Na2), D 3 h (NLi3Na2) and C s (NLiNa2 and NLi2Na) configurations. All possible dissociation energies were obtained. Received: 30 November 1998 / Accepted: 15 October 1999 / Published online: 14 March 2000  相似文献   

10.
用密度泛含方法研究了LaC5n(n=-1,0,+1)分子簇的结构和稳定性及振动光谱,对这个六原子体系提出了三种可能构型,点群结构为C2v对称性.第一个构型为La接在弯曲的C5链上,第二个是La通过二个键与C5环相连第三个是La通过一个键与C5环相连;结果表明,第一个构型即当La接在弯曲的C5链上时能量最低.振动光谱分析指出,当n=-1时,第二个构型为局域极小值;当n=+1时,第一个和第二个构型为局域极小值;对n=0,局域极小值没有找到.  相似文献   

11.
We have explored the structures and stabilities of AuXe n Z (n = 1–3, Z = ?1, 0, +1) cluster series at CCSD(T) theoretical level. The electron affinities and ionization potentials are correlated to the HOMO–LUMO gaps. The role of the interaction was investigated using the natural bond orbital analysis.  相似文献   

12.
The binding energy, dissociation energy, ionization potentials, electron affinities, gap and stability of small Al n Pt (n = 1–15) clusters, in comparison with pure aluminum clusters have been systematically investigated by means of density functional calculations at the B3LYP level. The growth patten for Al n Pt clusters is that the Pt atom substituted the surface atom of the Al n + 1 clusters for n < 13. Starting from n = 13, the Pt atom completely falls into the center of the Al-frame. The Pt atom substituted the center atom of the Al n + 1 clusters to form the Pt-encapsulated Aln geometries for n > 13. We also find that the impurity Pt atom causes local structural distortion due to different atomic radii and different bonding characteristics. The clusters with total atom numbers of 2, 7, and 11 exhibit high stability.  相似文献   

13.
The structural and energetic characteristics of aqua complexes Y(H2O) n 3+ (n = 1–10) have been calculated by the ab initio RHF and MP2 methods.  相似文献   

14.
The geometrical structures, stabilities, electronic and magnetic properties of Al_nZr(n = 1~14) clusters have been systematically investigated using density functional theory. It is found that for the optimized clusters the zirconium atom prefers to remain on the surface, and the growth patterns are organized as follows: Zr substituted Al_(n+1) clusters or Zr capped Aln clusters as well as Al added Al_(n-1)Zr clusters. All doped clusters exhibit relatively larger average binding energies and magnetic behaviors compared with pure Al_(n+1) counterpart. The calculated fragmentation energies and second-order difference of energies exhibit pronounced odd-even alternation behavior as a function of the cluster size when n = 3~13. In all Al_nZr clusters, there exits internal hybridization in both Al and Zr atoms and charge transfer from Al to Zr atom, which reflects the strong interactions between the two kinds of atoms. The magnetic property analysis shows that the 4d electrons of Zr atom are the main origin for cluster magnetism.  相似文献   

15.
Energetic and electronic structures of the on-top Al13Inm (n = 1 ~12,m = -1,0,+1)clusters have been investigated by employing a first-principles pseudo-potential plane wave method.Several parameters such as binding energies,second differences of energy and vertical-electron detachment energies have been adopted to characterize and evaluate the structure stability of Al13In (n = 1 ~ 12) clusters.The optimized models show that the Al13 moieties in the clusters can not retain the original regular icosahedron structure.Results from binding energy and second difference of energy show that Al13In and Al13In- clusters with even n are more stable than those with odd n in contrast with Al13In+ clusters.The calculation of vertical-electron detachment energies (VDE) of Al13In clusters indicates that Al13In and Al13In- clusters with even n are closer to the closed shell of the Jellium model.Further analysis of electron density of states and electron density differences reveals that the enhanced stability of Al13In- clusters is not only associated with the closed shell of valence electrons but also with the bonding type between I and associated Al atoms.  相似文献   

16.
17.
The optimized geometries, adiabatic electron affinities, and IR-active vibrational frequencies have been predicted for the long linear carbon chains HC(2n)H. The B3LYP density functional combined with the DZP basis set was used in this theoretical study. The computed physical properties are discussed. The predicted electron affinities form a remarkably regular sequence: 1.78 (HC(12)H), 2.08 (HC(14)H), 2.32 (HC(16)H), 2.53 (HC(18)H), 2.69 (HC(20)H), 2.83 (HC(22)H), and 2.95 eV (HC(24)H). The predicted structures display an alternating triple and very short single bond pattern, with the degree of bond alternation significantly less for the radical anions.  相似文献   

18.
In the coordination, hypervalent and cluster chemistry, three important characteristic properties are the maximum coordination number, magic number, and core coordination number. Yet, few studies have considered these three numbers at the same time for an ML(n) cluster with n larger than 8. In this article, we systematically studied the three properties of SiLi(n) (n = 4-16) clusters at the B3LYP/6-31G(d), B3LYP/6-311++G(2d), and CCSD(T)/6-311++G(3df)//B3LYP/6-311++G(2d) (for energy only) levels. Various isomeric forms with different symmetries were calculated. For each SiLi(n) (n = 4-9), silicon cohesive energy (cE) from SiLi(n) --> Si + Li(n) reaction, vertical ionization potential (vIP), and vertical electron affinity (vEA) were obtained for the lowest-energy isomer. We found that the maximum Li-coordination number of Si is 9, which is the largest number among the known MLi(n) clusters. All cE, vIP, and vEA values predicted that 6 is the magic Li-coordination number of Si. For small SiLi(n) (n < or = 6) clusters, Li atoms favor direct coordination to Si, whereas for larger SiLi(n) (n > or = 7) clusters, there is a core cluster that is surrounded by excessive Li atoms. The core Li-coordination number is 6 for SiLi(n) (n = 7,8), 7 for SiLi(n) (n = 9,10), 8 for SiLi(n) (n = 11-15) and 9 for SiLi(n) (n > or = 16). Through the calculations, we verified the relationship between the structure and stability of SiLi(n) with the maximum coordination number, magic number, and core coordination number.  相似文献   

19.
We present density functional calculations of Al n Au clusters for n = 1–15. The growth pattern for Al n Au (n = 1–7, 12, 14, 15) clusters is the Au atom occupying a peripheral position of Al n clusters, and the growth pattern for Al n Au (n = 8, 10 and 13) clusters is Au-substituted Al n+1 clusters. It is found that the Au atom replaces the surface atom of an Al n+1 cluster and occupies a peripheral position. In addition, the ground state structures of Al n Au clusters are more stable than pure Aln clusters. It is found that the Al13Au cluster exhibits high stability.  相似文献   

20.
Complexes of nickel atoms and small clusters with acetylene molecules are studied within the density functional theory. A trend toward the predominant formation of structures with bridge hydrogen atoms is observed in reactions between Ni n and acetylene with rising n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号