首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron-beam-irradiated poly(3-hydroxybutyrate) was used as a nucleating agent for poly(3-hydroxybutyrate) in a melt-spinning process. Molecular data and thermal properties of the irradiated samples were determined. The thermal properties of the nucleated melts were determined to assess the influence of the nucleation agents, and then spinning tests were carried out. Thermal and textile properties of the spun fibers were also determined. Estimations of the improvement of the crystallization in the spinline and of the inhibition of secondary crystallization in the fibers from the use of the described blood-compatible nucleation agents are given.  相似文献   

2.
This paper reports on an attempt to use reactive extrusion with peroxide as a comfortable pathway for improvement of the crystallization of poly(3-hydroxybutyrate) in a melt spinning process. At first, rheological and thermal properties of the modified melts are determined in order to assess the effect of nucleation. Then spinning tests are carried out. Molecular weights and molecular weight distributions of the spun fibers are determined by chromatographic methods. Average crystallite size is measured by wide angle X-ray scattering. Thermal and textile properties of the spun PHB fibers are also determined. An estimation of the improvement of the crystallization in the spinline and of the inhibition of the secondary crystallization in the fibers from the use of the described way of reactive extrusion is given.  相似文献   

3.
The effect of poly(vinyl alcohol)(PVA) fine particles as the nucleating agent on the crystallization behavior of bacterial poly(3‐hydroxybutyrate)(PHB) was studied using differential scanning calorimetry measurements and polarized light microscope observation. The results were compared with the effect of PVA conventionally blended with PHB. The PVA fine particles were found to be able to greatly enhance the crystallization of PHB, while the conventionally blended PVA extremely retarded the crystallization of PHB. The nucleating effect of PVA fine particles is almost comparable to that of the talc powder. Considering the biodegradability and biocompatibility of PVA, the usage of PVA particle as a nucleating agent provides marked benefits over the currently employed nonbiodegradable nucleating agents, such as talc and boron nitride. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44:1813–1820, 2006  相似文献   

4.
The effects of high‐speed melt spinning and spin drawing on the structure and resulting properties of bacterial generated poly(3‐hydroxybutyrate) (PHB) fibers were investigated. The fibers were characterized by their degree of crystallinity by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS), their orientation by WAXS, and the textile physical properties. The WAXS studies revealed that the fibers spun at high speeds and high draw ratios possessed orthorhombic (α modification) and hexagonal (β modification) crystals, the latter as a result of stress‐induced crystallization. The fiber structures formed during these processes were fibril‐like as the atomic force microscopy images demonstrated. The maximum physical break stress, the modulus, and the elongation at break observed in the fibril‐like spin drawn fibers were about 330 MPa, 7.7 GPa, and 37%, respectively. The fibers obtained by a low draw ratio of 4.0 had spherulitic structures and poor textile physical properties. The PHB pellets were analyzed by their degradation during the processes of drying and spinning and by their thermal and rheological properties. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2841–2850, 2000  相似文献   

5.
Electrospinning of poly(3‐hydroxybutyrate) (PHB), poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), and their blends was first carried out in chloroform at 50 °C on a stationary collector. The average diameter of the as‐spun fiber from PHB and PHBV solutions decreased with increasing collection distance and increased with increasing solution concentration and applied electrical potential. In all of the spinning conditions investigated, the average diameter of the as‐spun pure fibers ranged between 1.6 and 8.8 μm. Electrospinning of PHB, PHBV, and their blends was carried out further at a fixed solution concentration of 14% w/v on a homemade rotating cylindrical collector. Well‐aligned, cross‐sectionally round fibers without beads were obtained. The average diameter of the as‐spun pure and blend fibers ranged between 2.3 and 4.0 μm. The as‐spun fiber mats appeared to be more hydrophobic than the corresponding films and much improvement in the tensile strength and the elongation at break was observed for the blend fiber mats over those of the pure fiber ones. Lastly, indirect cytotoxicity evaluation of the as‐spun pure and blend fiber mats with mouse fibroblasts (L929) indicated that these mats posed no threat to the cells. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2923–2933, 2006  相似文献   

6.
The crystallization and morphology of poly(ethylene‐2,6‐naphthalene dicarboxylate) (PEN) containing, as nucleating agents, a sodium salt of a copolymer of ethylene and acrylic acid or a sodium salt of a copolymer of ethylene and methacrylic acid, were investigated with differential scanning calorimetry, polarized optical microscopy, and small‐angle light scattering. The nucleating agents accelerated the crystallization rate at high temperatures by decreasing the surface free energy barrier hindering nucleation. Meanwhile, the nucleating agents with flexible chains could also improve the mobility of the PEN chains and increase the crystallization rate at low temperatures. Hedrites were observed when PEN was crystallized at high temperatures, whereas crystallization at low temperatures led to the formation of spherulites. Similar but smaller morphologies were obtained in the presence of nucleating agents. With nucleating agents, the spherulites formed at low temperatures were less perfect, although the optical properties of the spherulites were not influenced. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2387–2394, 2002  相似文献   

7.
《先进技术聚合物》2018,29(1):30-40
Our daily life needs depend on plastics, as they are cheap and durable, so they become the most commonly used synthetic chemical products. But from an environmentalist's point of view, a major concern related to these plastics is their non‐biodegradable nature. Driven by growing demand to search for sustainable solutions to dispose off generating huge volume of synthetic plastic wastes, shifted the mind of researcher towards the use of biodegradable plastics which can be completely disposed‐off by microbial enzymatic degradation. These biodegradable plastics or “bioplastics” are also synthesized by microbes under certain stressed environmental conditions out of which poly(R‐3‐hydroxybutyrate) (PHB) is the most ubiquitous and best known representatives of polyhydroxyalkanoate family. The PHB is most intensively used for the innovative biomedical applications owing to suitable combination of biocompatibility, transport characteristics, and mechanical properties. These challenging aspects of PHB can be used for designing of novel medical devices, in tissue engineering, and for systematic sustained drug delivery. Lots of research reports on PHB degrading enzymes and their producing microorganisms including biochemical aspects are available but in scattered form. So this review highlighted all the relevant information of PHB and PHB‐degrading enzymes starting with basic classification, synthesis, mechanism, and applications that are environment friendly and are of public interest.  相似文献   

8.
Side‐chain liquid‐crystalline polymers (SCLCPs) as nucleating agents for high‐density polyethylene (HDPE) were investigated. For this purpose, the molecular architectures of four different vinyl monomers with liquid‐crystalline properties were designed and prepared with 1‐butanol, 1‐pentanol, 4‐hydroxybenzoic acid, hydroquinone, and acryloyl chloride as the starting materials through alkylation and acylation reactions. The corresponding polymers were synthesized by homopolymerization in 1,4‐dioxane with benzoyl peroxide as the initiator at 60 °C. Both the monomers and the synthesized polymers were characterized with elemental analysis, Fourier transform infrared, and 1H NMR measurements. Differential scanning calorimetry, thermogravimetric analysis, and hot stage polarized optical microscopy were employed to study the phase‐transition temperature, mesophase texture, and thermal stability of the liquid‐crystalline polymers. The results showed that all the polymers had thermotropic liquid‐crystalline features. Being used as nucleating agents, SCLCPs effectively increased both the crystallization temperature and rate and, at the same time, raised the crystallinity for HDPE. In comparison with common small‐molecule nucleating agents, such as 1,3:2,4‐dibenzylidenesorbitol, SCLCPs are more efficient and are indeed excellent nucleating agents for HDPE. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3067–3078, 2005  相似文献   

9.
The effect and efficiency of three nucleating agents, a sorbitol based clarifier, a traditional heterogeneous nucleating agent and poly(vinylcyclohexane) (PVCH) was studied in polypropylene (iPP) homopolymer. The nucleating agents were added to iPP in different amounts; PVCH in 0–200 ppm, while the other two in 0–2000 ppm. Optical and mechanical properties were determined on injection molded plates or bars, respectively. Nucleation efficiency was studied by thermal analysis, while structure was characterized by polarized light (PLM), scanning electron (SEM) and atomic force microscopy (AFM). Nucleus density was calculated using the method of Lamberti, which is based on the kinetic theory of the crystallization developed by Lauritzen and Hoffmann. The results proved that the nucleating agents modify properties in different ways and extent. PVCH is very efficient already at small concentrations and increases the stiffness of iPP considerably more than the other two compounds. On the other hand, the clarifier and the traditional nucleating agent induce better optical properties even at smaller efficiency. The structure developing in the presence of the three nucleating agents is also different. The clarifier forms a network in iPP and induces the formation of a microcrystalline structure according to the former literature data. Microspherulitic structure develops in the presence of the heterogeneous nucleating agent studied, while relatively large supermolecular units form in iPP nucleated by PVCH even under the conditions of injection molding. The calculation of nucleus density by existing models and the comparison of the results to optical properties proved that haze is determined by the size of the supermolecular units of the polymer and this latter depends on nucleus density.  相似文献   

10.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

11.
Poly(propylene carbonate) (PPC) is an aliphatic polycarbonate synthesized from carbon dioxide and propylene oxide. Poly(3‐hydroxybutyrate) (PHB) is a type of thermoplastic polyester produced by biological fermentation. The blending of PHB with PPC can effectively enhance the mechanical properties and barrier properties of PPC. Bionanocomposites of PPC/PHB enhanced by cellulose nanocrystal (CNC) are prepared via a two‐step process using polyethylene glycol as a carrier. Results show that the oxygen barrier properties of the composites increased with the increase of the CNC content. When the CNC content is 1 wt%, the oxygen barrier performance increases nearly 18 times. The assumed model can predict the barrier performance of composites with the combined influence of morphology and CNC distribution. This will make PPC/PHB/CNC nanocomposites a very promising degradable material for food packaging application.  相似文献   

12.
In this work, it is first reported that the poly (3‐hydroxybutyric acid) (PHB) oligomer with a few degrees of polymerization possesses effective antibacterial and antifungal properties. Two preparation methods for the PHB oligomer are described, namely, one‐step ring‐opening polymerization of β‐butyrolactone and extraction from the fermented PHB polymer. An appropriate amount of the synthesized PHB oligomer shows no physiological toxicity to the skin and major organs of mice. Topological application of the synthesized PHB oligomer imparts antimicrobial ability to non‐antibacterial fabrics with washing resistance. The synthesized PHB oligomer offers effective sterilization and promotes wound healing in infected nude mice. Most importantly, the PHB oligomer is also reactive to drug‐resistant bacteria. These results suggest that the PHB oligomer is not only a great candidate for antimicrobial modification but also a promising one for biomedical applications. Finally, the antimicrobial mechanisms of the PHB oligomer are revealed, and these include disruption of biofilm and the bacterial wall/membrane, leakage of the intracellular content, inhibition of protein activity, and change in the transmembrane potential.  相似文献   

13.
A simple, convenient and reliable calorimetric efficiency scale is proposed for the evaluation of nucleating additives for polymers. The scale is based on conventional differential scanning calorimetry cooling runs and makes use of a crystallization range determined in self-nucleation experiments. It can be correlated with spherulite sizes, and indicates the potential range of improvement of nucleating additives. Typical nucleating agents for isotactic polypropylene are evaluated; at best they rate at 60 to ca. 70% on this efficiency scale. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
In this study, thymine and melamine were introduced as nucleating agents for poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerates) (PHBVs) and poly(3‐hydroxybutyrate) (PHB), and their effects were compared with that of boron nitride (BN). Because the overall crystallization rate of PHBVs decreases significantly with the increase in the 3‐hydroxyvalerate comonomer content, the study focused on the crystallization of PHBVs. Isothermal crystallization kinetics of the neat PHBVs and the nucleated PHBVs were studied by differential scanning calorimetry (DSC). The Avrami equation was derived and the parameters were assessed for the nucleation and crystal growth mechanism. The nucleation and crystal growth were examined using polarized optical microscopy. All nucleating agents had similar particle sizes and showed good dispersion in the polymer matrix, as revealed by scanning electron microscopy. The results indicated that BN and thymine significantly increased the overall crystallization rate for all PHBVs studied and demonstrated very similar nucleating effects. Melamine reacted with PHBVs and accelerated the thermal degradation, and hence was less effective in nucleating PHBVs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1564–1577, 2007  相似文献   

15.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004  相似文献   

16.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

17.
We have previously reported two studies of the rheology and fiber properties of one sample of the copolymer of polyethylene terephthalate having 60 mol% of p-oxybenzoate (PHB) units. The DSC curve of that sample exhibited crystalline melting transitions, and the sample appeared to contain PHB blocks. Here we compare those results with observations for a second sample that, although nominally the same polymer, appears to be more random because it exhibits little PHB crystallinity. We had previously reported that the flow of the copolymer containing PHB blocks was non-Newtonian at all temperatures, and that it exhibited a thermal history effect. We find the flow of the more random polymer is Newtonian above the melting temperature, and the melt viscosity of the more random copolymer exhibits no thermal history effect. Fibers were spun from the more random copolymer with a capillary rheometer using a capillary having a length/diameter ratio of 14.1 and a shear rate at the wall of 6.4 sec?1. Spinning temperatures were 250, 260, and 280°C, and the spin draw ratio was examined as a variable. The initial modulus increased with spin draw ratio but exhibited no dependence upon the spinning temperature. For the copolymer containing PHB blocks, the initial modulus increased as the spinning temperature was raised. These differences are due to the larger amount of PHB crystallinity in the more blocky sample. When chips of the more random sample were heated for 1 h at 235°C, the melt viscosity increased and the initial modulus of the fibers decreased. These changes are due to the crystallization of longer PHB blocks produced by melt interchange.  相似文献   

18.
The addition of nucleating agents to semicrystalline polymersis largely used in the processing industry of plastic materials to improve some properties of polymers as well as for economical and technological reasons. In this work, the influence of talc concentration on the nucleation efficiency of poly(propylene) (PP), as well as on the non-isothermal kinetics of the crystallization of that system were determined by differential scanning calorimetry (DSC). The nucleating efficiency was determined by Fillon's method, and the dynamic nucleation by Ozawa's method at cooing rates of 2, 5 and 10°C min–1. The results show that both the degree of crystallinity and the crystallization temperature increase with the filler content and decrease at higher cooling rates and that Ozawa's (n,) exponent and the nucleation efficiency increase with temperature and filler content. It was also shown that the nucleating efficiency of talc in poly(propylene) is comparable to the best heterogeneous nucleating agents available. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
A novel triblock copolymer PS–PHB–PS based on the microbial polyester Poly[(R)‐3‐hydroxybutyrate)] (PHB) and poly(styrene) (PS) was prepared to be used as compatibilizer for the corresponding PHB/PS blends. It was prepared in a three‐step procedure consisting of (i) transesterification reaction between ethylene glycol and a high‐molecular‐weight PHB, (ii) synthesis of bromo‐terminated PHB macroinitiator, and (iii) atom transfer radical polymerization polymerization of styrene initiated by the PHB‐based macroinitiator. Fourier transform infrared, gel permeation chromatography, 1H‐, and 13C‐NMR spectroscopies were used to determine the molecular structure and/or end‐group functionalities at each step of the procedure. Although thermogravimetric analysis showed that the block copolymer underwent a stepwise thermal degradation and had better thermal stability than their respective homopolymers, differential scanning calorimetry displayed that the PHB block in the copolymer could not crystallize, and thus generating a total amorphous structure. Atomic force microscopy images indicated that the block copolymer was phase segregated in a well‐defined morphological structure with nanodomain size of ~40 nm. Contact angle measurements proved that the wettability properties of the block copolymer were in between those of the PHB and PS homopolymers. Blends analyzed for their morphology and thermal properties showed good miscibility and had well‐defined morphological features. Polymer blends exhibited lower crystallinity and decreased stiffness which was proportional to the amount of compatibilizer content in the blends. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The effect of nucleating agents on the polymorphic crystallization behavior of poly(butylene adipate) (PBA) was studied with four kinds of commercially available nucleating agents, such as talc and boron nitride. The crystal structures of the α and β forms were studied with wide‐angle X‐ray diffraction. The β‐to‐α‐crystal transformation of PBA in the absence and presence of the nucleating agents in isothermal crystallization and nonisothermal crystallization processes was studied with differential scanning calorimetry and polarized optical microscopy. In both isothermal and nonisothermal crystallization, the introduction of nucleating agents selectively initiated the nucleation of the α‐form crystal, which was relatively slow in the absence of nucleating agents. The nucleating activity of the four kinds of nucleating agents in the crystallization of the PBA α‐form crystal was determined by the study of the nonisothermal crystallization, spherulite morphology, and isothermal kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2340–2351, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号