首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The static and dynamic mechanical behavior of two double network (DN) hydrogels, alginate/polyacrylamide (PAAm) hybrid hydrogel and sodium poly(2-acrylamido-2-methylpropanesulfonic acid) PNaAMPS/PAAm, is presented to understand the role played by different cross-linked networks on fracture and recovery properties. Although with a smaller modulus, alginate/PAAm hybrid hydrogel had a much higher stretchability, whether with or without notches, in the tensile tests. Continuous step strain measurement by using a strain-controlled parallel-plate rheometer showed that alginate/PAAm can immediately recover its mechanical properties after breakdown, while PNaAMPS/PAAm didn't show mechanical recovery at all.  相似文献   

2.
The supramolecular hydrogels derived from low-molecular-mass gelators represent a unique class of soft matters and have important potential applications in biomedical fields, separation technology and cosmetic science. However, they suffer usually from weak mechanical and viscoelastic properties. In this work, we carry out the in situ hybridization of clay nanoparticles (Laponite RD) into the supramolecular hydrogel formed from a low-molecular-mass hydrogelator, 2,6-di[N-(carboxyethyl carbonyl)amino]pyridine (DAP), and investigate the viscoelastic and structural characteristics of resultant hybrid hydrogel. It was found that a small concentration of Laponite RD could lead to a significant increase in the storage modulus, loss modulus or complex viscosity. Compared with neat DAP hydrogel, the hybrid hydrogel has a greater hydrogel strength and a lower relaxation exponent. In particular, the enhancement of the clay nanoparticles to the viscoelastic properties of the DAP hydrogel is more effective in the case of higher DAP concentration. By relating its macroscopic elastic properties to a scaling fractal model, such a hybrid hydrogel was confirmed to be in the strong-link regime and to have a more complex network structure with a higher fractal dimension when compared with neat DAP hydrogel.  相似文献   

3.
Inkjet printing enables the mimicry of the microenvironment of natural complex tissues by patterning cells and hydrogels at a high resolution. However, the polymer content of an inkjet-printable bioink is limited as it leads to strong viscoelasticity in the inkjet nozzle. Here it is demonstrated that sonochemical treatment controls the viscoelasticity of a gelatin methacryloyl (GelMA) based bioink by shortening the length of polymer chains without causing chemical destruction of the methacryloyl groups. The rheological properties of treated GelMA inks are evaluated by a piezo-axial vibrator over a wide range of frequencies between 10 and 10 000 Hz. This approach enables to effectively increase the maximum printable polymer concentration from 3% to 10%. Then it is studied how the sonochemical treatment effectively controls the microstructure and mechanical properties of GelMA hydrogel constructs after crosslinking while maintaining its fluid properties within the printable range. The control of mechanical properties of GelMA hydrogels can lead fibroblasts more spreading on the hydrogels. A 3D cell-laden multilayered hydrogel constructs containing layers with different physical properties is fabrictated by using high-resolution inkjet printing. The sonochemical treatment delivers a new path to inkjet bioprinting to build microarchitectures with various physical properties by expanding the range of applicable bioinks.  相似文献   

4.
The development of hydrogels as skin dressings demonstrates a great potential in real life applications. To achieve this, the hydrogel has to conquer its natural poor mechanical strength, and to prolong its lifetime, antifatigue and self-healing properties originating from dynamic interactions are also required. As skin dressings, the hydrogel needs to maintain its ductility while pursuing the above mentioned properties. In this work, poly(ethylene glycol) diacrylate is used to produce skin dressings by reinforcing poly(ethylene glycol) diacrylate/alginate double network hydrogels with a crosslinker from mussel-inspired chemistry, which is 3,4-dihydroxy-l-phenylalanine. This crosslinking methodology significantly improved mechanical strength of the hydrogel, with 11,200% increase in compressive failure strength; it endowed the hydrogel with outstanding antifatigue and training strengthening properties that makes its mechanical strength increasing in a 50 cycles compressive test; the hydrogel showed excellent self-healing properties that in rheological characterization; it also displayed enhanced storage modulus after withstanding a shear strain up to 1100%; meanwhile, the hydrogel exhibited extreme ductility with an elastic modulus of only 10.90–16.53 kPa. 3,4-dihydroxy-l-phenylalanine also renders the hydrogel its inherent antioxidant activity, conductivity, and bioadhesiveness. Together with the highly transparent appearance, the hydrogels possess a great potential and practibility in the fields of skin dressings.  相似文献   

5.

Wound healing is a complex process which requires an appropriate environment for quick healing. Recently, biodegradable hydrogel-based wound dressings have been seen to have high potential owing to their biodegradability and hydrated molecular structure. In this work, a novel biodegradable composite of sodium alginate hydrogel with wool needle-punched nonwoven fabric was produced for wound dressing by sol–gel technique. The wool nonwoven was dipped in the sodium alginate-water solution and then soaked in calcium chloride solution which resulted in hydrogel formation. FTIR analysis and SEM images confirm the presence of alginate hydrogel inside the needle-punched wool nonwoven fabric. The wound exudate absorbing capacity of hydrogel based wool nonwoven was increased 30 times as compared to pure wool nonwoven. Moreover, the tensile strength and moisture management properties of hydrogel based nonwoven were also enhanced. The unique combination of alginate hydrogel with biocompatible wool nonwoven fabric provides moist environment and can help in cell proliferation during wound healing process.

  相似文献   

6.
With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell-structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

7.
Herein,copper ion doped calcium alginate(Cu~(2+)/CaAlg) composite hydrogel filtration membranes were prepared by using natural polymer sodium alginate(NaAlg) as raw material.The thermal stability and structure of the composite membranes were characterized by thermogravimetric analysis and infrared spectroscopy.The mechanical strength,anti-fouling performance,hydrophilicity and filtration performance of the membrane were studied.The results show that Cu~(2+)/CaAlg hydrogel membrane has excelle nt mechanical properties and thermal stability.The anti-swelling ability of the membrane was greatly enhanced by doping Cu~(2+).After three alternate filtration cycles,the flux recovery rate of Cu~(2+)/CaAlg hydrogel membrane can still reach 85%,indicating that the membrane has good antipollution performance.When the operation pressure was 0.1 MPa,the rejection of coomassie brilliant blue G250 reached 99.8% with a flux of 46.3 L m ~2 h ~1,while the Na_2 SO_4 rejection was less than 10.0%.The Cu~(2+)/CaAlg membrane was recycled after 24 h in the filtration process,and its flux and rejection rate did not decrease significantly,indicating that the hydrogel membrane has long-term application potential.The Cu~(2+)/CaAlg membrane has a wide range of applications prospect in dye desalination,fine separation and biopharmaceutical technology fields.  相似文献   

8.
In this study, sodium humate/poly(acrylamide‐co‐methacrylic acid)/kaolin semi‐interpenetrating polymer network hybrid hydrogel was synthesized as an effective adsorbent for the removal of methylene blue. The morphological and structural properties, and swelling behavior in distilled water and various environments of hybrid hydrogel were investigated with different analyses and tests. The equilibrium swelling percent of hybrid hydrogel reached to 37,000% in 240 min. The parameters (agitation time, concentration, dose, temperature, and pH) affecting adsorption process for methylene blue were optimized using Taguchi method. The data obtained in optimum conditions were well fitted to Langmuir adsorption isotherm and maximum adsorption capacity was determined as 833. 33 mg/g. In the light of the results, the utilization of hybrid hydrogel with high swelling capacity is foreseen as a favored adsorbent in several separation processes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1070–1078  相似文献   

9.
In the recent years, development of intervertebral disc prosthesis has been of great concern to the world of medicine and science. Substitution of the spinal disc or its part being displaced or damaged due to trauma or a disease process for the artificial structure well imitating high tensile properties and elasticity of the real disc would highly improve the existing treatment techniques. In this work, the attempt to develop the PVA-based hydrogel material for artificial spinal disc has been made. The polymer was initially processed with the use of formaldehyde solution as a crosslinking agent and sulfuric acid as a catalyst. Then properties of the material have been altered by saturating the already existing PVA hydrogel with a mixture of hydrophilic and hydrophobic monomers (2-hydroxyethyl methacrylate and methyl methacrylate) and a subsequent exposure to ionizing radiation (60Co source). In this way, interpenetrating polymer network has been built on the crosslinked PVA scaffold. Resulting structures were tested for their mechanical behavior at different loads. Series of measurements leading to the determination of the physicochemical properties of created gels including crosslink density and swelling abilities were also performed.  相似文献   

10.
Nanostructured hydrogels based on "smart" polymer conjugates of poloxamers and protein molecules were developed in order to form stimulus-responsive materials with bioactive properties for 3-D cell culture. Functionalized Pluronic F127 was covalently attached to a fibrinopeptide backbone and cross-linked into a structurally versatile and mechanically stable polymer network endowed with bioactivity and temperature-responsive structural features. Small angle X-ray scattering and transmission electron microscopy combined with rheology were used to characterize the structural and mechanical features of this biosynthetic conjugate, both in solution and in hydrogel form. The temperature at which the chemical cross-linking of F127-fibrinopeptide conjugates was initiated had a profound influence on the mechanical properties of the thermo-responsive hydrogel. The analysis of the scattering data revealed modification in the structure of the protein backbone resulting from increases in ambient temperature, whereas the structure of the polymer was not affected by ambient temperature. The hydrogel cross-linking temperature also had a major influence on the modulus of the hydrogel, which was rationally correlated to the molecular structure of the polymer network. The hydrogel structure exhibited a small mesh size when cross-linked at low temperatures and a larger mesh size when cross-linked at higher temperatures. The mesh size was nicely correlated to the mechanical properties of the hydrogels at the respective cross-linking temperatures. The schematic charts that model this material's behavior help to illustrate the relationship that exists between the molecular structure, the cross-linking temperature, and the temperature-responsive features for this class of protein-polymer conjugates. The precise control over structural and mechanical properties that can be achieved with this bioactive hydrogel material is essential in designing a tissue-engineering scaffold for clinical applications.  相似文献   

11.
With the goal of imposing shape and structure on supramolecular gels, we combine a low‐molecular‐weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell‐structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self‐assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP‐loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy‐to‐use reaction‐dosing form. These uniquely shaped and structured LMWG‐filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

12.
Injectable hydrogels for nonsteroidal anti‐inflammatory drugs’ (NSAIDs) delivery to minimize the side effects of NSAIDs and achieve long‐term sustained release at the targeted site of synovial joint are attractive for osteoarthritis therapy, but how to improve its mechanical strength remains a challenge. In this work, a kind of 1D natural clay mineral material, attapulgite (ATP), is introduced to a classical cyclodextrin pseudopolyrotaxane (PPR) system to form a reinforced supramolecular hydrogel for sustained release of diclofenac sodium (DS) due to its rigid, rod‐like morphology, and unique structure, which has great potential in tissue regeneration, repair, and engineering. Investigation on the interior morphology and rheological property of the obtained hydrogel points out that the ATP distributed in PPR hydrogel plays a role similar to the “reinforcement in concrete” and exhibits a positive effect on improving the mechanical properties of PPR hydrogel by regulating their interior morphology from a randomly distributed style to the well‐ordered porous frame structure. The hybrid hydrogels demonstrate good shear‐thinning and thixotropic properties, excellent biocompability, and sustained release behavior both in vitro and in vivo. Furthermore, preliminary in vivo treatment in an acute inflammatory rat model reveals that the ATP hybrid hydrogels present sustained anti‐inflammatory effect.  相似文献   

13.
Incorporation of an interpenetrating polymer network into an existing single polymer network enables augmentation of the original substrate's mechanical properties, and translation of this concept from purely synthetic materials to natural–synthetic hybrid systems provides the opportunity to reinforce mechanical properties of bulk biological substrates. In many disease states, the mechanical properties of bodily tissues deteriorate rendering them prone to further material failure. Herein, a tissue‐supplementing technique is described in which an interpenetrating biomimetic hydrogel is polymerized in situ throughout cartilage tissue. The treatment restores the inferior compressive properties of osteoarthritic cartilage to that of healthy cartilage, preferentially localizing to weaker regions of tissue. Furthermore, the treatment technique preserves cartilage under harsh articulation conditions, showing promise as a materials‐based treatment for early‐stage osteoarthritis.  相似文献   

14.
Injectable hydrogels have been considered as promising materials for bone regeneration,but their osteoinduction and mechanical performance are yet to be improved.In this study,a novel biocompatible injectable and self-healing nano hybrid hydrogel was on-demand prepared via a fast(within 30 s) and easy gelation approach by reversible Schiff base formed between-CH=O of oxidized sodium alginate(OSA) and-NH_2 of glycol chitosan(GCS) mixed with calcium phosphate nanoparticles(CaP NPs).Its raw materials can be ready in large quantities by a simple synthesis process.The mechanical strength,degradation and swelling behavior of the hydrogel can be readily controlled by simply controlling the molar ratio of-CH=O and-NH_2.This hydrogel exhibits pH responsiveness,good degradability and biocompatibility.The hydrogel used as the matrix for mesenchymal stem cells can significantly induce the proliferation,differentiation and osteoinduction in vitro.These results showed this novel hydrogel is an ideal candidate for applications in bone tissue regeneration and drug delivery.  相似文献   

15.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

16.
将线性聚(N-异丙基丙烯酰胺)(PNIPAAm)和海藻酸钠(SA)分子同时引入到PNIPAAm凝胶中,制备了交联聚(N-异丙基丙烯酰胺)/(海藻酸钠/聚(N-异丙基丙烯酰胺))半互穿网络(Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN)水凝胶。在弱碱性条件下(pH=7.4),改变SA与线性PNIPAAm的质量比对Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN水凝胶的溶胀度没有太大的影响。在酸性条件下(pH=1.0),其溶胀度随着SA与线性PNIPAAm质量比的减小而增大。由于亲水性SA与线性PNIPAAm的协同作用,Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN水凝胶的消溶胀速率得到很大提高。  相似文献   

17.
各向异性水凝胶在外界的响应刺激下可以具有不同的反应机制与驱动过程. 本文综述了近期基于PNIPAM水凝胶智能响应驱动器的设计方法, 总结了多种各向异性结构对驱动性能的影响, 并对该领域所面临的挑战进行了讨论.  相似文献   

18.
Supramolecular hydrogels constructed through molecular self‐assembly of small molecules have unique stimuli‐responsive properties; however, they are mechanically weak in general, relative to conventional polymer gels. Very recently, we developed a zwitterionic amino acid tethered amphiphilic molecule 1 , which gave rise to a remarkably stiff hydrogel comparable with polymer‐based agarose gel, retaining reversible thermal‐responsive properties. In this study, we describe that rational accumulation of multiple and orthogonal noncovalent interactions in the supramolecular nanofibers of 1 played crucial roles not only in the mechanical reinforcement but also in the multistimuli responsiveness. That is, the zwitterionic amino acid moiety and the C C double bond unit of the hydrogelator 1 can function as a pH‐responsive unit and a light‐responsive unit, respectively. We also demonstrated that this stiff and multistimuli‐responsive supramolecular hydrogel 1 is applied as a unique mold for 2D and 3D‐patterning of various substances. More significantly, we succeeded in the fabrication of a collagen gel for spatial patterning, culturing, and differentiation of live cells by using hydrogel 1 molds equipped with 2D/3D microspace channels (100–200 μm in diameter).  相似文献   

19.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

20.
Hydrogel films have been used extensively in the preparation of biosensors and biomedical devices. The characteristics of the aqueous interface of the polymer layer are significant for the biosensor or device function; likewise, the changing mechanical properties of thermoresponsive polymers are an important feature that affects the polymer behavior. Atomic force microscopy was used here to characterize both the surface and the mechanical properties of polymeric hydrogel films prepared from a thermoresponsive terpolymer of N-isopropylacrylamide and acrylic acid with benzophenonemethacrylate as a photoreactive cross-linker comonomer. The force-distance curves thus obtained were analyzed to assess both the surface forces and the mechanical response that were associated with the hydrogel. These properties were investigated as a function of temperature, in water and in Tris buffer, for different degrees of polymer cross-linking. For samples in water, the distance over which the surface forces were effective was found to remain constant as the temperature was increased from 26 to 42 °C, even though the mechanical response indicated that the samples had been heated past the lower critical solution temperature, or LCST. The bulk of the polymer becomes less soluble above the LCST, although this does not seem to affect the surface properties. This may be due to the segregation of the acrylic acid-rich polymer segments near the gel surface, which is in agreement with reports for related systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号