首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a method for the preparation of porous poly(L-lactide)/poly[(L-lactide)-co-glycolide] scaffolds for tissue engineering. Scaffolds were prepared by a mold pressing-salt leaching technique from structured microparticles. The total porosity was in the range 70-85%. The pore size distribution was bimodal. Large pores, susceptible for osteoblasts growth and proliferation had the dimensions 50-400 microm. Small pores, dedicated to the diffusion of nutrients or/and metabolites of bone forming cells, as well as the products of hydrolysis of polyesters from the walls of the scaffold, had sizes in the range 2 nm-5 microm. The scaffolds had good mechanical strength (compressive modulus equal to 41 MPa and a strength of 1.64 MPa for 74% porosity). Scaffolds were tested in vitro with human osteoblast-like cells (MG-63). It was found that the viability of cells seeded within the scaffolds obtained using the mold pressing-salt leaching technique from structured microparticles was better when compared to cells cultured in scaffolds obtained by traditional methods. After 34 d of culture, cells within the tested scaffolds were organized in a tissue-like structure. Photos of section of macro- and mesoporous PLLA/PLGA scaffold containing 50 wt.-% of PLGA microspheres after 34 d of culture. Dark spots mark MG-63 cells, white areas belong to the scaffold. The specimen was stained with haematoxylin/eosin. Bar = 100 microm.  相似文献   

2.
The material surface must be considered in the design of scaffolds for bone tissue engineering so that it supports bone cells adhesion, proliferation and differentiation. A biomimetic approach has been developed as a 3D surface modification technique to grow partially carbonated hydroxyapatite (the bonelike mineral) in prefabricated, porous, polymer scaffolds using a simulated body fluid in our lab. For the rational design of scaffolding materials and optimization of the biomimetic process, this work focused on various materials and processing parameters in relation to apatite formation on 3D polymer scaffolds. The apatite nucleation and growth in the internal pores of poly(L-lactide) and poly(D,L-lactide) scaffolds were significantly faster than in those of poly(lactide-co-glycolide) scaffolds in simulated body fluids. The apatite distribution was significantly more uniform in the poly(L-lactide) scaffolds than in the poly(lactide-co-glycolide) scaffolds. After incubation in a simulated body fluid for 30 d, the mass of poly(L-lactide) scaffolds increased approximately 40%, whereas the mass of the poly(lactide-co-glycolide) scaffolds increased by about 15% (see Figure). A higher ionic concentration and higher pH value of the simulated body fluid enhanced apatite formation. The effects of surface functional groups on apatite nucleation and growth were found to be more complex in 3D scaffolds than on 2D films. Surprisingly enough, it was found that carboxyl groups significantly reduced the apatite formation, especially on the internal pore surfaces of 3D scaffolds. These findings are critically important in the rational selection of materials and surface design of 3D scaffolds for mineralized tissue engineering and may contribute to the understanding of biomineralization as well.SEM micrograph of a poly(L-lactide) scaffold.  相似文献   

3.
Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were investigated for possible application as a matrix for the three-dimensional growth of chondrocyte culture. The PHBV scaffolds were fabricated by a compression moulding, thermal processing and salt particulate leaching method without using organic solvent. The porous structure of the scaffolds was investigated with an optical microscope (OM) and scanning electron microscope (SEM) and the porosity was calculated. Then, the chondrocytes were cultured on the PHBV scaffolds for lone time to investigate whether it can be applied to construct the cartilage tissue in vitro. The results showed that the chondrocytes maintained their activity, fully expressed their phenotype and produced the extracellular matrix after incubation in vitro on the scaffolds for 7 days. In addition, in the prolonged incubation time, the percent of chondrocytes in their nature round morphology increased with an increase in the incubation period and they could synthesize the type II collagen and cartilage-specific proteoglycans. All of these results showed that the PHBV scaffolds had the potential to be used as chondrocytes carrier for cartilage engineering.  相似文献   

4.
With the advancement in tissue engineering, researchers are working hard on new techniques to fabricate more advanced scaffolds from biocompatible polymers with enhanced porosity, appropriate mechanical strength, diverse shapes and sizes for potential applications in biomedical field in general and tissue engineering in particular. These techniques include electrospinning, solution blow spinning, centrifugal spinning, particulate leaching (salt leaching), freeze-drying, lithography, self-assembly, phase separation, gas foaming, melt molding, 3-D printing, fiber mesh and solvent casting. In this article we have summarized the scaffold’s fabrication techniques from biocompatible polymers that are reported so far, the recent advances in these techniques, characterization of the physicochemical properties of scaffolds and their potential applications in the biomedical field and tissue engineering. The article will help both newcomers and experts working in the biomedical implant fabrication to not only find their desired information in one document but also understand the fabrication techniques and the parameters that control the success of biocompatible polymeric scaffolds. Furthermore, a static analysis of the work published in all forms on the most innovative techniques is also presented. The data is taken from Scopus, restricting the search to biomedical fields and tissue engineering.  相似文献   

5.
Nanofibrous scaffolds of poly[(L-lactide)-co-(1,5-dioxepan-2-one)] generated by electrospinning have been compared with porous films obtained by solvent cast/salt leaching and homogeneous films. A comparison between the fibrous materials and the homogeneous solvent-cast films revealed that the surface of the nanofibers was more hydrophobic and that the nanofibers were degraded more rapidly in the presence of proteinase. It was obvious that the strain-to-break was reduced by the nanofiber formation, it decreased from 370% to 130% independent of fiber diameter. These values were however considerably higher than the strain-to-break of the solvent-cast/salt leaching scaffold. In addition, the nanofibrous material accelerated the adhesion and growth of the mesenchymal stem cell compared to the smooth material.  相似文献   

6.
Poly (glycerol sebacate) (PGS) elastomer scaffolds with different porosity for skin tissue engineering were fabricated via particulate leaching. The introduction of pores lowers the hydrophilicity but improves the water uptake capability of PGS. The gel content of PGS increases with the increase of salt mass ratio, but the degree of swelling goes the opposite way due to the existence of the porous structure. The degradation rate of PGS can be tailored and controlled by the porous structure, which is of great value for its applications in tissue engineering. The feasibility of these porous PGS scaffolds for skin tissue engineering was evaluated by seeding mouse dermal fibroblasts (MDFs) onto the scaffold. In vitro cell culture results indicate good attachment, proliferation and deep penetration of MDFs into porous PGS scaffolds, which confirms the excellent biocompatibility of these scaffolds.  相似文献   

7.
Providing a conclusive microenvironment for cell growth, proliferation and differentiation is a major developmental strategy in the tissue engineering and regenerative medicine. This is usually achieved in the laboratory by culturing cells in three-dimensional polymer-based scaffolding materials. Here, we describe the fabrication of a cellulose scaffold for tissue engineering purposes from cellulose fiber using a salt leaching method. The 1-n-allyl-3-methylimidazolium chloride (AmimCl) IL was used as a solvent for cellulose. The leaching methodology used in this study offers the unique advantage of providing effective control of scaffold porosity by simply varying cellulose concentration. Morphologic testing of the scaffolds produced revealed pore sizes of 200–500 μm. In addition, the scaffolds had high water adsorption rates and slow degradation rates. To further investigate the suitability of these scaffolds for tissue engineering applications, biocompatibility was checked using an MTT assay and confirmed by Live/Dead® viability testing. In addition, scanning electron microscopy and DAPI studies and in vivo experiment demonstrated the ability of cells to attach to scaffold surfaces, and a biocompatibility of matrices with cells, respectively. The authors describe the environmentally friendly fabrication of a novel cellulose-based tissue engineering scaffold.  相似文献   

8.
Porous poly(ε‐caprolactone) structures have been prepared by leaching of compression moulded salt‐containing polymer precipitates. Coagulation takes place when a PCL solution containing dispersed water‐soluble salt particles is precipitated into an excess of non‐solvent. Porous scaffolds are obtained after leaching of the compression moulded polymer‐salt precipitate. This process yields scaffolds with a very homogeneous pore morphology and independent control of pore size and porosity.  相似文献   

9.
In order to improve the cell seeding efficiency and cell compatibility inside porous tissue scaffolds, a method of fibrin gel‐mediated cell encapsulation inside the scaffold was optimized. Disc‐type poly(d ,l ‐glycolic‐co‐lactic acid) (PLGA) scaffolds without a dense surface skin layer were fabricated using an established solvent casting and particulate leaching method as a model porous scaffold, which showed high porosity ranging from 90 ± 2% to 96 ± 2%. The thrombin and fibrinogen concentration as precursors of fibrin gel was varied to control the gelation kinetics as measured by rheology analysis, and optimized conditions were developed for a uniform fibrin gel formation with the target cells inside the porous PLGA scaffold. The fibroblast cell seeding accompanied by a uniform fibrin gel formation at an optimized gelation condition inside the PLGA scaffold resulted in an increase in cell seeding efficiency, a better cell proliferation, and an increase in final cell density inside the scaffold. Scanning electron microscopy images revealed that cells were better spread and grown by fibrin gel encapsulation inside scaffold compared with the case of bare PLGA scaffold. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (≈85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(d,l-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields.  相似文献   

11.
A new class of hydrogels made from poly(vinyl alcohol) (PVA) and amino acid was formed into porous tissue engineering scaffolds by the colloidal gas aphron (CGA) method. CGA microfoams are formed using high speed stirring to generate uniform, micrometer scale bubbles. CGAs offer several advantages over conventional scaffold fabrication techniques including room temperature processing, aqueous conditions and utilization of air bubbles to create uniform pores. This technique eliminates the need for toxic solvents and salt templates. In addition, the novel poly(vinyl alcohol) hydrogels are inherently strong, eliminating the need for crosslinkers.  相似文献   

12.
A novel process was developed to fabricate biodegradable polymer scaffolds for tissue engineering applications, without using organic solvents. Solvent residues in scaffolds fabricated by processes involving organic solvents may damage cells transplanted onto the scaffolds or tissue near the transplantation site. Poly(L-lactic acid) (PLLA) powder and NaCl particles in a mold were compressed and subsequently heated at 180 degrees C (near the PLLA melting temperature) for 3 min. The heat treatment caused the polymer particles to fuse and form a continuous matrix containing entrapped NaCl particles. After dissolving the NaCl salts, which served as a porogen, porous biodegradable PLLA scaffolds were formed. The scaffold porosity and pore size were controlled by adjusting the NaCl/PLLA weight ratio and the NaCl particle size. The characteristics of the scaffolds were compared to those of scaffolds fabricated using a conventional solvent casting/particulate leaching (SC/PL) process, in terms of pore structure, pore-size distribution, and mechanical properties. A scanning electron microscopic examination showed highly interconnected and open pore structures in the scaffolds fabricated using the thermal process, whereas the SC/PL process yielded scaffolds with less interconnected and closed pore structures. Mercury intrusion porosimetry revealed that the thermally produced scaffolds had a much more uniform distribution of pore sizes than the SC/PL process. The utility of the thermally produced scaffolds was demonstrated by engineering cartilaginous tissues in vivo. In summary, the thermal process developed in this study yields tissue-engineering scaffolds with more favorable characteristics, with respect to, freedom from organic solvents, pore structure, and size distribution than the SC/PL process. Moreover, the thermal process could also be used to fabricate scaffolds from polymers that are insoluble in organic solvents, such as poly(glycolic acid). Cartilage tissue regenerated from thermally produced PLLA scaffold.  相似文献   

13.
In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.  相似文献   

14.
Neural tissue engineering has become a potential technology to restore the functionality of damaged neural tissue with the hope to cure the patients with neural disorder and to improve their quality of life. This paper reports the design and synthesis of polypeptides containing neuron stimulate, glutamic acid, for the fabrication of biomimetic 3D scaffold in neural tissue engineering application. The polypeptides are synthesized by efficient chemical reactions. Monomer γ‐benzyl glutamate‐N‐carboxyanhydride undergoes ring‐opening polymerization to form poly(γ‐benzyl‐l ‐glutamate), then hydrolyzes into poly(γ‐benzyl‐l ‐glutamate)‐r‐poly(glutamic acid) random copolymer. The glutamic acid amount is controlled by hydrolysis time. The obtained polymer molecular weight is in the range of 200 kDa for good quality of fibers. The fibrous 3D scaffolds of polypeptides are fabricated using electrospinning techniques. The scaffolds are biodegradable and biocompatible. The biocompatibility and length of neurite growth are improved with increasing amount of glutamic acid in scaffold. The 3D scaffold fabricated from aligned fibers can guide anisotropic growth of neurite along the fiber and into 3D domain. Furthermore, the length of neurite outgrowth is longer for scaffold made from aligned fibers as compared with that of isotropic fibers. This new polypeptide has potential for the application in the tissue engineering for neural regeneration.  相似文献   

15.
低热-高压法制备PLGA多孔支架及其体外降解研究   总被引:6,自引:1,他引:6  
采用低热-高压法制备了聚(dl-丙交酯/乙交酯)75/25(PLGA75/25)组织工程多孔支架。该方法避免了使用有机溶剂,支架的孔隙率在90%以上,孔径大小分布均匀。多孔支架经过酒精处理后,支架表面产生许多微小的凹陷;用藻酸钙改性处理后,支架形态保持良好。两种处理都使支架的压缩强度有所增大,亲水性增强。虽然孔隙率高的支架降解速率稍慢,但其体外降解规律基本一致:特性粘数争力学强度衰减快,而质量损失较慢,降解6周后,支架的质量损失仅为3%左右;体外降解3周后,支架的形态保持良好,可望在细胞移植争组织修复的早期发挥支撑作用。  相似文献   

16.
Tissue engineering approach aims to overcome the transplant drawbacks and facilitate tissue repair and regeneration. Here, a new conductive, highly porous, and flexible polycaprolactone/gelatin/polypyrrole/graphene 3D scaffolds for nerve tissue repair is presented. A simple and efficient porogen leaching fabrication method is applied to create a 3D network with a pore radius of 3.8 ± 0.7 to 4.2 ± 0.8 μm with an exceptional uniform circular porous structure. The conductivity of the polymeric scaffold without graphene, in wet conditions, was found to be 0.78 ± 0.1 S.m−1 and it increased to 3.3 ± 0.2 S.m−1 for the optimized sample containing 3wt% graphene (G3). Tensile strength was measured at 163 KPa for the base sample (without graphene) and improved to 526 KPa for G3 sample. Following 42 days of incubation in PBS, 32.5% degradation for the base sample (without graphene) was observed. The cell study demonstrated a non-cytotoxic nature of all scaffolds tested and the cells had mostly stretched and covered the surface. Overall, the sum of results presented in this study demonstrate a simple fabrication platform with extraordinary aspects that can be utilized to mimic the native conductive tissue properties, and also because of its flexibility it can easily be rolled into a nerve conduit to fill gaps in nerve tissue regeneration.  相似文献   

17.
摘要 采用喷雾干燥法制备包载地塞米松(Dex)的聚L-丙交酯-b-聚乙二醇(PLLA-PEG)微球, 以热致相分离/粒子洗去法制备聚乙交酯-co-丙交酯(PLGA)多孔支架, 通过复合溶结法将载药微球固定于PLGA多孔支架中, 制得载药微球-支架(记为MS-S). 另外, 在支架制备过程中将Dex直接加入PLGA溶液中, 制得对比的直接载药支架(记为D-S). 以扫描电镜观察微球和支架的微观形貌, 在循环压应力与水浴摇床两种环境下分别对上述两种载药支架进行控制释放Dex的实验, 用紫外-可见光分光光度计测定Dex的累积释放量. 结果表明, Dex及微球的载入对PLGA支架的整体形貌影响较小; 循环压应力显著提高了Dex从载药支架中的释放速率, 与D-S相比, MS-S延缓了药物的释放. 研究模拟体内循环压应力下支架控制释放药物规律对于实现理想的临床效果具有重要意义.  相似文献   

18.
丁建东 《高分子科学》2013,31(5):737-747
A facile technique is herein reported to fabricate three-dimensional(3D) polymeric porous scaffolds with interior surfaces of a topographic microstructure favorable for cell adhesion.As demonstration,a well-known biodegradable polymer poly(lactide-co-glycolide)(PLGA) was employed as matrix.Under the porogen-leaching strategy,the large and soft porogens of paraffin were modified by colliding with small and hard salt particles,which generated micropits on the surfaces of paraffin spheres.The eventual PLGA scaffolds after leaching the modified porogens had thus interior surfaces of microscale roughness imprinted by those micropits.The microrough scaffolds were confirmed to benefit adhesion of bone marrow stromal cells(BMSCs) of rats and meanwhile not to hamper the proliferation and osteogenic differentiation of the cells.The insight and technique might be helpful for biomaterial designing in tissue engineering and regenerative medicine.  相似文献   

19.
Resorbable porous scaffold discs and solid films were prepared from poly[(1,5-dioxepan-2-one)-co-(L-lactide)] and poly[(epsilon-caprolactone)-co-(L-lactide)]. The surfaces of the scaffolds were functionalized to increase their hydrophilicity. A total of 90 samples were prepared to cover all important combinations of experimental and material factors, and all experimental data were fitted by a partial least square model. As a result of grafting, the porous discs and solid films exhibited a tremendous increase in wettability. The functionalized discs were hygroscopic so that water was instantly absorbed and thoroughly wet the substrates.  相似文献   

20.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/chitin nanocrystals (CNC) composite scaffolds were synthesized by the salt leaching and thermally induced phase separation (TIPS) technique. The scaffolds have porous structures with macro-pores (100-300 mm in diameters) and micro-pores (10 mm). The surface characteristics of the scaffolds were characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, and the mechanical properties were investigated by a compression test. Human adipose-derived stem cells (hADSCs) were seeded onto the PHBV/CNC scaffolds and in vitro cell culture results showed that the composite scaffolds enhanced the hADSCs adhesion, which implies that the material may have potential application in tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号