首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The particle dispersibility of barium ferrite and iron oxide magnetic particles in carrageenan gels was investigated, and the influence of the dispersibility on the giant reduction in the dynamic modulus of the gels was discussed. The gels containing barium ferrite demonstrated giant reductions in the storage Young's modulus on the order of 10 (5) Pa due to magnetization; however, small reductions in the storage modulus of less than 10 (4) Pa were observed for the gels containing iron oxide. The storage modulus of gels with barium ferrite did not follow the Krieger-Dougherty equation above volume fractions of 0.06, indicating the heterogeneous dispersion of the magnetic particles; however, the modulus of the gels with iron oxide satisfied the equation at all volume fractions, suggesting the random dispersion of the particles. It was noted that the gels with barium ferrite demonstrated enhanced nonlinear viscoelasticity and a large value of the loss tangent, while the gels with iron oxide exhibited weak nonlinear viscoelasticity and a small value of the loss tangent. Magnetic measurements indicated high values of remanent magnetization for barium ferrite and low values for iron oxide. After magnetization at 1 T, the magnetic gels with barium ferrite became elongated parallel to the magnetic field and shrunk perpendicular to the field. In contrast, the magnetic gels with iron oxide did not undergo a marked deformation. These results strongly indicate that the giant reduction in the storage modulus requires both enhanced nonlinear viscoelasticity and magnetostriction which originate from the particle dispersibility. The relationship between the dispersibility of magnetic particles and the giant reduction in the storage modulus is discussed using rheological and morphological data.  相似文献   

2.
Here we report on the synthesis of ultrasmall gamma-Fe2O3 nanoparticles (5 nm) presenting a very narrow particle size distribution and an exceptionally high saturation magnetization. The synthesis has been carried out by decomposition of an iron organometallic precursor in an organic medium. The particles were subsequently stabilized in an aqueous solution at physiological pH, and the colloidal dispersions have been thoroughly characterized by complementary techniques. Particular attention has been given to the assessment of the mean particle size by transmission electron microscopy, X-ray diffraction, dynamic light scattering, magnetic, and relaxometric measurements. The good agreement found between the different techniques points to a very narrow particle size distribution. Regarding the magnetic properties, the particles are superparamagnetic at room temperature and present an unusually high saturation magnetization value. In addition, we describe the potential of these particles as specific positive contrast agents for magnetic resonance molecular imaging.  相似文献   

3.
Fractals are aggregates of primary particles organized with a certain symmetry defined essentially by one parameter-a fractal dimension. We have developed a model for the interpretation of acoustic data with respect to particle structure in aggregated fractal particles. We apply this model to the characterization of various properties of a fumed silica, being but one example of a fractal structure. Importantly, our model assumes that there is no liquid flow within the aggregates (no advection). For fractal dimensions of less than 2.5, we find that the size and density of aggregates, computed from the measured acoustic attenuation spectra, are quite independent of the assumed fractal dimension. This aggregate size agrees well with light-scattering measurements. We applied this model to the interpretation of electroacoustic data as well. A combination of electroacoustic and conductivity measurements yields sufficient data for comparing the fractal model of the particle organization with a simple model of the separate primary particles. Conductivity measurements provide information on particle surface conductivity reflected in terms of the Dukhin number (Du). Supporting information for the zeta potential and Du can also be provided by electroacoustic measurements assuming thin double-layer theory. In comparing values of Du from these two measurements, we find that the model of separate solid particles provides much more consistent results than a fractal model with zero advection. To explain this, we first need to explain an apparent contradiction in the acoustic and electroacoustic data for porous particles. Although not important for interpreting acoustic data, advection within the aggregate does turn out to be essential for interpreting electrokinetic and electroacoustic phenomena in dispersions of porous particles.  相似文献   

4.
Whereas correlation spectroscopy gives reliable information on the size of immersed particles in those cases where the size distribution is narrow, large problems arise for more complex particle distributions. For instance, samples containing distinctly different particles of rather similar size lead to correlation functions which are very close to those of monodisperse samples. We present a measurement technique which is based on angle dependent measurements of 3D cross correlation functions and an evaluation scheme which uses the results of the Mie theory. The experimental technique warrants applications to strongly scattering samples. Having tested this procedure with mixtures containing standard latex particles we applied it to a sample of skimmed, homogenized milk.  相似文献   

5.
We used a unique approach based on contact mechanics to quantify the adhesive and linear viscoelastic properties of latex films approximately 100 μm thick. The latex films were formed from a mixture of two particle types and form stable films consisting of rigid and compliant regions. We used atomic force microscopy to verify that these regions remained well dispersed on the length scale of the original particle size. The properties of the films were determined by ?h, the volume fraction of the stiffer component. For ?h < 0.45, the films were quite adhesive, with viscoelastic properties determined by the compliant matrix material. Adhesive interactions between the film and indenter enabled us to oscillate the indenter in the direction normal to the film surface while maintaining a constant contact area, allowing us to determine the frequency dependence of the dynamic moduli of the films. Stiffer films with higher volume fractions of hard particles were characterized by indentation measurements, from which we were able to determine the time dependence of the relaxation modulus of the latex films. All results were consistent with a power‐law form of the relaxation modulus with an exponent of 0.25. The magnitude of the relaxation modulus increased by a factor of 3000 as the volume fraction of hard particles increased from 0 to 0.89. For low values of ?h, the composition dependence of the film stiffness was similar to the concentration dependence of the viscosity of spherical particle suspensions. A much weaker concentration dependence was observed for the highest values of ?h, where the properties of the films were dominated by the stiffer component. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3090–3102, 2001  相似文献   

6.
During ageing of casein or skim milk gels, structural changes take place that affect gel parameters, such as pore size and storage modulus. These changes can be explained in terms of rearrangements of the gel network at various length scales. In this paper, rheological experiments on rennet-induced casein gels and a general model on rearrangements are presented. The results of experiments (e.g. microscopy, permeametry) and computer simulations, the model, and recent literature on casein gels and other types of particle gels are compared to each other. Experiments presented include measurements of storage and loss moduli and maximum linear strain of the casein gels. Parameters varied were pH (5.3 and 6.65) and temperature (25 and 30 degrees C). In addition, the casein volume fraction (5-9 vol.%) was varied, which enables application of fractal scaling models. For rennet-induced casein gels, it is demonstrated that at the lower pH, all types of rearrangements proceed significantly faster. The rearrangements include: an increase in the size of compact building blocks; partial disappearance of fractal structure; and the formation of straightened strands, some of which eventually break. All of these rearrangements seem to be a consequence of particle fusion. There are indications of universality of the relation between particle fusion and gel syneresis for gels composed of viscoelastic particles.  相似文献   

7.
This study examines the electroacoustics of particles dispersed in polymer hydrogels, with the particle size either less than or greater than the gel mesh size. When the particles are smaller than the gel mesh size, their acoustic vibration is resisted by only the background water medium, and the measured dynamic electrophoretic mobility, μ(d) (obtained in terms of colloid vibration current, CVI), is the same as that in water. For the case of particles larger than the gel mesh size, μ(d) is decreased due to trapping, and the net decrease depends on the viscoelastic properties of the gel. The gel mesh size was varied by varying its cross-link density, with the latter being characterized as the storage modulus, G'. The dependence of mobility on G', for systems of a given particle size, and on particle size, for gels of a given G', are investigated. The measured mobility remains constant as G' is increased (i.e., mesh size is decreased) up to a value of approximately 300 Pa, beyond which it decreases. In the second set of measurements, the trapped particle size was increased in a gel medium of constant mesh size, with G' being approximately 100 Pa. In this case, the measured μ(d) is found to be effectively constant over the particle size range studied (14-120 nm); that is, it is independent of the degree of trapping as expressed by the ratio of the particle size to the mesh size.  相似文献   

8.
Effects of magnetization on the complex modulus of kappa-carrageenan magnetic gels have been investigated. The magnetic gel was made of a natural polymer, kappa-carrageenan, and a ferrimagnetic particle, barium ferrite. The complex modulus was measured before and after magnetization of the gel by dynamic viscoelastic measurements with a compressional strain. The gels showed a giant reduction in the storage modulus of approximately 10(7) Pa and also in the loss modulus of approximately 10(6) Pa due to magnetization. The reduction increased with increasing volume fraction of ferrite, and it was nearly independent of the frequency. It was also found that the change in the modulus was nearly independent of the magnetization direction and irradiation time of the magnetic fields to the gel. The magnetic gels demonstrating the giant reduction in the dynamic modulus showed a large nonlinear viscoelastic response. It was observed that the magnetic gel was deformed slightly due to magnetization. The observed giant complex modulus reduction could be attributed to the nonlinear viscoelasticity and deformation caused by magnetization. Magnetism, nonlinear viscoelasticity, and effects of magnetization on the morphological and shape changes were discussed.  相似文献   

9.
利用预乳化乳液法制备了不同单体配比的聚(甲基丙烯酸甲酯-co-甲基丙烯酸-co-甲基丙烯酸羟乙酯)(P(MMA-co-MAA-co-HEMA))微凝胶分散液;采用透射电子显微镜、动态光散射仪研究了微凝胶的微观形态、粒径大小及其溶胀率;利用试管倒转法对微凝胶分散液的凝胶化相转变行为进行了研究,借助椎板流变仪考察了所形成胶态凝胶的储能模量与单体配比、微凝胶分散液浓度和温度的关系.结果表明,所制备的微凝胶的数均粒径为90 nm左右,当MMA与MAA的投料质量不变时,随着HEMA含量的增加,分散液凝胶化所需的临界最小浓度增大,临界最大pH值减小,胶态凝胶的储能模量增加.当保持单体MMA与HEMA的投料质量不变时,随着单体MAA投料质量的增多,微凝胶的数均粒径和溶胀率增大,胶态凝胶的储能模量先升高后降低;当MAA占单体总摩尔数的25%时,浓度为15 wt%的微凝胶分散液在扫描频率为100 rad/s时,胶态凝胶的储能模量最高可达2×104Pa.这类微凝胶分散液在组织工程支架材料方面有潜在的应用价值.  相似文献   

10.
The magnetic properties of cobalt ferrite nanoparticles dispersed in a silica matrix in samples with different concentrations (5 and 10 wt% CoFe2O 4) and same particle size (3 nm) were studied by magnetization, DC and AC susceptibility, and Mossbauer spectroscopy measurements. The results indicate that the particles are very weakly interacting. The magnetic properties (saturation magnetization, anisotropy constant, and spin-canting) are discussed in relation to the cation distribution.  相似文献   

11.
The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior of the nanoparticles, with weak interactions slightly increasing with the cobalt ferrite content and with the particle size. From high-field Mossbauer spectra at low temperatures, the cationic distribution and the degree of spin canting have been estimated and both parameters are only slightly dependent on the particle size. The magnetic anisotropy constant increases with decreasing particle size, but in contrast to many other systems, the cobalt ferrite nanoparticles are found to have an anisotropy constant that is smaller than the bulk value. This can be explained by the distribution of the cations. The weak dependence of spin canting degree on particle size indicates that the spin canting is not simply a surface phenomenon but also occurs in the interiors of the particles.  相似文献   

12.
Superparamagnetic iron oxide nanoparticles (SPION) with narrow size distribution and stabilized by polyvinyl alcohol (PVA) were synthesized. The particles were prepared by a coprecipitation technique using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Using a design of experiments (DOE) approach, the effect of different synthesis parameters (stirring rate and base molarity) on the structure, morphology, saturation magnetization, purity, size, and size distribution of the synthesized magnetite nanoparticles was studied by various analysis techniques including X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC) measurements, vibrating-sample magnetometer (VSM), transmission electron microscopy (TEM), UV-visible, and Fourier transform infrared (FT-IR) spectrometer. PVA not only stabilized the colloid but also played a role in preventing further growth of SPION followed by the formation of large agglomerates by chemisorption on the surface of particles. A rich behavior in particle size, particle formation, and super paramagnetic properties is observed as a function of molarity and stirring conditions. The particle size and the magnetic properties as well as particle shape and aggregation (individual nanoparticles, magnetic beads, and magnetite colloidal nanocrystal clusters (CNCs) are found to be influenced by changes in the stirring rate and the base molarity. The formation of magnetic beads results in a decrease in the saturation magnetization, while CNCs lead to an increase in saturation magnetization. On the basis of the DOE methodology and the resulting 3-D response surfaces for particle size and magnetic properties, it is shown that optimum regions for stirring rate and molarity can be obtained to achieve coated SPION with desirable size, purity, magnetization, and shape.  相似文献   

13.
The breakdown of structure in gelled suspensions due to the application of an external stress results in flow. Here we explore the onset of flow by investigating the onset of nonlinear behavior in the elastic moduli of a widely studied class of thermo-reversible gels over a range of volume fractions. We employ the system composed of octadecyl-coated silica particles (radius = 24 nm) suspended in decalin that displays a transition from a liquid to a gel below a volume-fraction-dependent gel temperature, Tgel. The perturbative yield stress at which the gel modulus drops to 90% of its value in the linear viscoelastic limit is found to increase monotonically with volume fraction and decreasing temperature. The recently proposed activated barrier-hopping theory of Schweizer and co-workers1,2 presents a framework to capture the impact of external forces on the mechanical properties of structurally arrested systems. By characterizing particle interactions with a Yukawa potential and employing the resultant static structure factor as input into the activated barrier-hopping theory, we make predictions for how the elastic modulus evolves with the applied stress. Comparisons of these calculations with experiments reveal that the theory does an excellent job of quantitatively capturing the perturbative yield stresses over the entire range of volume fractions and temperatures explored in the study. The match of predictions with experimental results suggests that the theory not only captures particle localization but also how this localization is modulated in the presence of an external stress.  相似文献   

14.
分别对动态光散射粒径测量仪的入射波长、散射角度、测量池温度进行校准,并对影响测量结果准确性各因素的不确定度分量进行了评价,校准后动态光散射仪的测量结果可溯源至国家计量标准。为消除多重散射、颗粒间相互作用、颗粒粒径分布对动态光散射测量结果的影响,建立了动态光散射测量结果修正方法。其中为消除多重散射及颗粒间相互作用的影响,需采用多浓度测量或线性回归的方法得到特定浓度下的颗粒粒径;为修正颗粒粒径分布对动态光散射测量结果的影响,需先采用SEM方法准确测量颗粒粒径分布,然后根据光强加权动力学平均粒径和数量平均粒径的理论公式,得到二者之间的差异。  相似文献   

15.
A simple particle-level simulation model that takes into account interparticle friction forces is developed to describe the dynamic response of magneto-rheological fluids. The results obtained for single-width particle chains are found to be in good agreement with slender body theory predictions [J. de Vicente, M.T. López-López, J.D.G. Durán, G. Bossis, J. Colloid Interface Sci. 282 (2005) 193]. The addition of side chains to a single-width one results in one order of magnitude increase of storage modulus and relaxation. The double logarithmic plot of storage and loss moduli vs frequency gives a limiting slope of one when including friction forces between particles. Simulation results are found to be in agreement with experimental measurements on an iron/kerosene model MR-fluid.  相似文献   

16.
Ferromagnetic properties of ultrafine magnetite (Fe3O4) particles were examined by the ESR and the static magnetic susceptibility measurements. Ferromagnetic resonance became to be observed at the particle size larger than 3.4 nm. This finding suggests that the bulk-like ferromagnetic state cannot be formed in the particle less than 3.4 nm diameter for magnetite. Magnetic moments in such a small diameter region were also determined by the analyses of magnetization curves and were found to be smaller than those expected from the particle size. These findings from ESR and magnetization are discussed to clarify the nature of spin-ordering in a finite size sample.  相似文献   

17.
We investigated the rheological properties of a composite gel consisting of poly(vinyl alcohol) and aluminum hydroxide particles, and discussed the relation among nonlinear viscoelasticity, percolation and particles dispersibility. The dynamic viscoelastic measurements revealed that the storage modulus at volume fractions ? < 0.04 satisfied with the Krieger-Dougherty equation representing random dispersion of particles. The storage modulus did not show any nonlinear viscoelastic response at ? < 0.04. However, the storage modulus at ? > 0.06 took a value which is far larger than that expected by the equation, indicating heterogeneous distribution of particles. Additionally, the nonlinear viscoelastic response was recognized clearly at ? > 0.06, suggesting a partial contact between particles. The storage modulus at ? > 0.18 showed a further increase satisfied with the percolation theory, therefore, the volume fraction is considered to be the percolation threshold of 3-dimension. Microscopic observations of the gel showed a clear network with a mesh size of few μm that is considered to be a partial network of particles.  相似文献   

18.
Na?ve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the na?ve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.  相似文献   

19.
The viscoelastic properties of a dispersion of polyacrylonitrile particles stabilised by a block copolymer poly-2-vinylpyridine/polytert butylstyrene dispersed in solvesso have been measured as a function of particle concentration and frequency at ambient temperatures. At low volume fraction of particles it was found that the loss modulus of the dispersions was larger than the storage modulus, whilst at volume fractions > 0.40 the storage modulus dominates the rheology. This is attributable to there being a steric repulsion between the particles as a result of an increasing concentration of particles and the resultant reduction in interparticle separation in the dispersion. In addition the observed exponential increase of the storage modulus with increasing particle volume fraction mirrors the exponential increase in force with decreasing surface separation of the same type of polymers adsorbed to mica.  相似文献   

20.
Summary: Effects of magnetization on the complex modulus of κ‐carrageenan magnetic gels have been investigated. The magnetic gel was made of a natural polymer, κ‐carrageenan, and a ferromagnetic particle, barium ferrite. The complex modulus of the magnetic gel was investigated by dynamic viscoelastic measurements with a compressional strain. It was first observed that the magnetic gels showed giant storage modulus reduction ≈107 Pa before and after magnetization. The reduction was nearly independent of the frequency, and it increased with increasing the volume fraction of the ferrite. The maximum reduction in the storage modulus reached 14.9 MPa which corresponds to 76.5% of the modulus before magnetization. It was also found that the change in the modulus was nearly independent of a magnetization direction. Magnetism and morphology of the magnetic gels were also presented.

Strain dependence of the storage modulus at 1 Hz for κ‐carrageenan gel (□) and its magnetic gel before (○) and after (•) magnetization (ϕ = 0.39). The geometry of magnetization and strain directions is perpendicular.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号