首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the present work, the synthesis and characterization of nano-HAP powders by a novel ultrasonic coupled sol-gel synthesis is reported. The obtained powders were sintered by conventional means at different temperatures. In addition to this, HAP powders prepared through the sol-gel method without the aid of the ultrasonic waves is also studied. The obtained nano-HAP powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopic (SEM) techniques. The results have proved that the nano-HAP powders synthesized by ultrasonic coupled sol-gel synthesis showed remarkable reduction in the particle size when compared with the conventional sol-gel method and hence these powders could be used as a coating material in biomedical applications.  相似文献   

2.
In the present study we characterized the microstructures of the Lc and HII phases in a glycerol monooleate (GMO)/tricaprylin (TAG)/water mixture as a function of temperature. We studied the factors that govern the formation of a low-viscosity HII phase at relatively elevated temperatures (>35 degrees C). This phase has very valuable physical characteristics and properties. The techniques used were differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The reverse hexagonal phase exhibited relatively rapid flow of water in the inner channels within the densely packed cylindrical aggregates of GMO with TAG molecules located in the interstices. The existence of two water diffusion peaks reflects the existence of both mobile water and hydration water at the GMO-water interface (hydrogen exchange between the GMO hydroxyls and water molecules). Above 35 degrees C, the sample became fluid yet hexagonal symmetry was maintained. The fluidity of the HII phase is explained by a significant reduction in the domain size and also perhaps cylinder length. This phenomenon was characterized by higher mobility of the GMO, lower mobility of the water, and a significant dehydration process.  相似文献   

3.
This paper reports the synthesis and characterization of gallium nitride (GaN) thin films deposited on p-type silicon (100) substrates by using low cost spin coating method under various nitridation temperatures. This work demonstrated that spin coating with the new prepared precursor solution can be used as a versatile method for the successfully growth of GaN thin films. Furthermore, the influence of varying nitridation temperatures on the structural, morphological, and optical properties of synthesized GaN thin films were studied in this work. The GaN thin films were characterized by X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, photoluminescence and Raman spectroscopy. All the characteristics of the GaN thin films were effectively improved with the increasing of the nitridation temperatures from 750 to 950 °C and degraded at temperature of 1,050 °C. The measured results show that nitridation temperature plays an important role in improving the crystalline quality of the GaN thin films and the most efficient nitridation temperature was at 950 °C.  相似文献   

4.
The recycling and recovery of important materials from inexpensive feedstock has now become an intriguing area and vital from commercial and environmental viewpoints. In the present work, extraction of different single phases of alumina (α, γ, θ-Al2O3) having high purity (>99.5 %) from locally available waste beverage cans (~95 % Al) through facile precipitation route calcined at distinct temperatures has been reported. The optimization of process technology was done by a variety of different synthesis parameters, and the production cost was estimated between 84.47-87.45 USD per kg of alumina powder. The as prepared alumina fine particles have been characterized using different sophisticated techniques viz. TG-DTA, WD-XRF, XRD, FT-IR, SEM, DLS-based particle size analysis (PSA) with zeta (ζ) potential measurement and UV–Visible Spectroscopy. X-ray diffractogram confirms the formation of γ-, θ-, and α-alumina at 500–700 °C, 900–1000 °C, and 1200 °C respectively and crystallite size, crystallinity, strain, dislocation density, and specific surface area were measured using major X-ray diffraction peaks which varies with temperature. The SEM studies showed that the as prepared alumina particles were agglomerated, irregular-shaped with particle size (0.23–0.38 µm), pore size, and porosity were calculated from SEM image. ζ-potentials at different pH values as well as isoelectric point (IEP) of α, γ, and θ alumina were calculated in an aqueous medium which changes with temperature. The direct band gap (Eg) energies were found between 4.09 and 5.19 eV of alumina obtained from different calcination temperatures. The synthesized materials can be used in sensors, ceramics, catalysis, and insulation applications.  相似文献   

5.
LiFe5O8 solid-phase synthesis at radiation-thermal (RT) annealing of lithium carbonate and iron oxide mechanical mixture was studied using thermal analysis (TG/DSC) and X-ray powder diffraction (XRD) techniques. The RT annealing was proceeded with high-power pulsing beam of 2.4 MeV electrons. It was shown that RT synthesis of the precursors considerably enhances the reactivity of the solid system within temperatures range 600–800 °C. In particular, lithium ferrite can be obtained at lower temperatures than those necessary in the absence of RT annealing.  相似文献   

6.
Even though it is a potential visible-light responsive photocatalyst, the application of BiFeO3 (BFO) is restricted because of the presence of residual impurities in the synthesis process. To alleviate this problem, in this work, BiFeO3 was synthesized by the sonochemical method and calcined at different temperatures. Morphologies and phases of the samples were evaluated by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) was used to analyze the absorption properties. The photocatalytic activities of the samples were evaluated via the photocatalytic degradation of rhodamine-B (RhB) aqueous solution under simulated solar light irradiation. The results revealed that the phase transformation from amorphous to crystalline phase has occurred during heat treatment. The formation of pure BFO occurred only at about 600 °C, indicating the importance of heat treatment during the synthesis process. On the other hand, the decolorization of RhB solution was completed by pure BFO photocatalyst within 1 h of simulated solar light irradiation.  相似文献   

7.
This study reports on the formation of a low viscosity H(II) mesophase at room temperature upon addition of Transcutol (diethylene glycol mono ethyl ether) or ethanol to the ternary mixture of GMO (glycerol monooleate)/TAG (tricaprylin)/water. The microstructure and bulk properties were characterized in comparison with those of the low viscosity HII mesophase formed in the ternary GMO/TAG/water mixture at elevated temperatures (35-40 degrees C). We characterized the role of Transcutol or ethanol as inducers of disorder and surfactant mobility. The techniques used were rheology, differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The incorporation of either Transcutol or ethanol induced the formation of less ordered HII mesophases with smaller domain sizes and lattice parameters at room temperature (up to 30 degrees C), similar to those found for the GMO/TAG/water mixture at more elevated temperatures (35-40 degrees C). On the basis of our measurements, we suggest that Transcutol or ethanol causes dehydration of the GMO headgroups and enhances the mobility of the GMO chains. As a result, these two small molecules, which compete for water with the GMO polar headgroups, may increase the curvature of the cylindrical micelles and also perhaps reduce their length. This results in the formation of fluid H(II) structures at room temperature (up to 30 degrees C). It is possible that these phases are a prelude to the H(II)-L(2) transformation, which takes place above 35 degrees C.  相似文献   

8.
The present work deals with phytogenic synthesis of Ag NPs in the natural polymer alginate as support material using Aglaia elaeagnoidea leaf extract as a reducing, capping, and stabilizing agent. Ag nanoparticles embedded in alginate were characterized using UV–Vis absorption spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy techniques and selected area electron diffraction techniques. The formation of AgNPs embedded in the polymer was in spherical shape with an average size of 12 nm range has been noticed. The prepared embedded nanoparticles in polymer were evaluated as a solid heterogeneous catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and methylene blue to leuco methylene blue in the liquid phase using sodium borohydride (NaBH4) as reducing agent. The silver nanoparticles embedded polymer exhibited extraordinary catalytic efficacy in reduction of 4-NP to 4-AP and the rate constant is 0.5054 min?1 at ambient conditions. The catalyst was recycled and reused up to 10 cycles without significant loss of catalytic activity. The preparation of Ag–CA composite was facile, stable, efficient, eco-friendly, easy to recycle, non-toxic, and cost effective for commercial application.  相似文献   

9.
A simple method to prepare nanocrystalline hydroxyapatite (nHAP) is performed using a precipitation method assisted with microwave heating method. This method can be reported notably with high reproducibility and productivity. The received ceramic powder possesses characteristic of needle-shaped nanocrystals with dimension about 50 nm in diameter and 200 nm in length. The particle size distribution has been confirmed being in the range of 28-159 nm. Thermal analyses revealed that nHAP has at least three thermal events influenced by elevated temperatures. Phase stability and microstructure evolution of the nHAP calcined at temperatures range between 700 and 1200 °C are discussed in terms of the formation of secondary phases, the decomposition of HAP releasing carbonate and water. Various experimental techniques have been employed in this work, including powder X-ray diffraction, IR spectroscopy, DSC and TGA thermal analyses, dynamic light scattering and scanning electron microscopy.  相似文献   

10.
Ag on gamma-alumina is a promising catalyst for hydrocarbon selective catalytic reduction in lean-burn gasoline and diesel engines for transportation applications. Although much is known about the mechanism of NOx reduction and the various intermediates, little agreement exists on the nature of the active silver species. In the present work, aberration-corrected STEM has provided new information about the nature of Ag on alumina both as impregnated and following treatments at various temperatures with exposure to simulated exhaust gas. Ex situ techniques have provided new insights into the evolution of Ag on alumina following exposure to temperature and simulated exhaust gas.  相似文献   

11.
Thermal investigations of direct iron ore reduction with coal   总被引:1,自引:0,他引:1  
In this paper, fundamental mechanisms for iron ore reduction in coal–ore mixtures have been investigated using several advanced experimental techniques. Firstly, the thermal properties of coal–ore mixtures were studied and apparent specific heat of coal–ore mixtures against temperature was obtained at a heating rate of 10 °C/min. Several exothermic and endothermic peaks were observed which were related to the decomposition reactions and reduction. The flue gases from the mixture were analysed using a mass spectrometer. Secondly, the X-ray diffraction (XRD) and the iron phase analytical techniques were applied to identify the iron phase changes with the temperature. It has been found that coal devolatilisation and iron oxides reduction occur simultaneously during the heating of the mixture. H2 and CO gases produced from coal devolatilisation and char gasification were responsible for the reduction of iron oxides at these temperatures. Iron oxides undergo step-wise reduction over the whole process. The results in this work provide a fundamental understanding for the direct reduced ironmaking processes.  相似文献   

12.
Chemical, mineralogical and textural characterizations were performed on glazed pieces prepared in laboratory as well as on faiences fragments collected from the existing remains in “Santa Clara-a-Velha” monastery (Coimbra, Portugal). The chemical investigation was carried out using micro X-ray fluorescence (μ-EDXRF) and wavelength dispersive X-ray fluorescence (WDXRF); the mineralogical results using X-ray diffraction (XRD) and the textural profile was obtained by scanning electron microscopy coupled with an energy dispersive spectroscopy system (SEM-EDS). Attention has been drawn to the glaze mineralogical changes during the firing temperature process, where three different types of glazes were submitted to three different firing temperatures (800 °C, 900 °C and 1,000 °C). Under these conditions, it is possible to relate the mineralogical content of the fragments to their firing temperature. Furthermore, we focused our purposes on identifying the technological aspects of the ceramic production in Coimbra, such as the raw materials, manufacture techniques and firing temperature adopted for the glaze. The latter aspect is highly dependent on the ceramic materials. In the framework of a more general project, this survey has as premise the recognition of a pattern, which is thought to be exclusively typical from the region of Coimbra. The perspective developed in the present work is towards reliable archaeometric criteria, which can be used to characterise scientifically the ceramics from Coimbra.  相似文献   

13.
Solvothermal synthesis is an efficient synthetic method for preparing nano and micromaterials. Preparation of hematite through alcoholysis of ferric ion under solvothermal condition has been carried out at low concentrations. In this paper, Fe2O3 homogeneous core/shell hierarchical nanostructures were synthesized via solvothermal treatment of FeCl3·6H2O and ethanol. The achievements of such structures can be attributed to two important factors: high temperature and high concentration. Besides, the crystal water and reaction time were also important factors to the synthesis of hematite. The prepared samples were characterized using X-ray powder diffraction, Raman spectra, scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer, transmission electron microscopy and Brunauer–Emmett–Teller surface area and pore size distribution. X-ray photoelectron spectroscopy showed a satellite peak at 719.8 eV, which is the characteristic peak of Fe(III). The formation mechanism of the spheres and the effects of the reactant concentrations and reaction temperatures have been discussed. Moreover, the enhanced catalytic activity of the spheres has also been investigated through oxidation of benzyl alcohol to benzaldehyde with high conversion (42%) and selectivity (95%).  相似文献   

14.
The process of formation of cerium titanate films as a function of annealing temperature and composition has been studied by combining X-ray diffraction analysis and far infrared spectroscopy. The films have been prepared by a sol–gel synthesis using metal chlorides as precursors; the synthesis allows obtaining cerium titanate films upon annealing in air. A brannerite type, CeTi2O6, phase has been identified by X-ray diffraction and Rietveld analysis on thin films. CeTi2O6 is formed upon annealing at 700 °C and in a limited range of ceria-titania mixed compositions. The far infrared spectra are useful to observe the formation of crystalline phases at the beginning of the crystallization process at lower firing temperatures, when the XRD analysis is not enough sensitive.  相似文献   

15.
The formation processes of metal–organic frameworks are becoming more widely researched using in situ techniques, although there remains a scarcity of NMR studies in this field. In this work, the synthesis of framework MFM-500(Ni) has been investigated using an in situ NMR strategy that provides information on the time-evolution of the reaction and crystallization process. In our in situ NMR study of MFM-500(Ni) formation, liquid-phase 1H NMR data recorded as a function of time at fixed temperatures (between 60 and 100 °C) afford qualitative information on the solution-phase processes and quantitative information on the kinetics of crystallization, allowing the activation energies for nucleation (61.4 ± 9.7 kJ mol−1) and growth (72.9 ± 8.6 kJ mol−1) to be determined. Ex situ small-angle X-ray scattering studies (at 80 °C) provide complementary nanoscale information on the rapid self-assembly prior to MOF crystallization and in situ powder X-ray diffraction confirms that the only crystalline phase present during the reaction (at 90 °C) is phase-pure MFM-500(Ni). This work demonstrates that in situ NMR experiments can shed new light on MOF synthesis, opening up the technique to provide better understanding of how MOFs are formed.

A new in situ NMR methodology for studying the formation processes of MOFs is reported, supported by SAXS and PXRD experiments. Synthesis of a phosphonate-based MOF is described, from molecular aggregation through to nucleation and crystallisation.  相似文献   

16.
Design and processing of new materials with improved high-temperature properties is one of the most challenging tasks of modern engineering. Among such materials, nonoxidic ceramics hold an important place. When optimizing the synthesis conditions of these new materials in an largely empirical manner, the use of analytical methods that can fully document the resulting phase compositions is of great importance. In this paper, we demonstrate the advantages of using combined microbeam X-ray diffraction and X-ray fluorescence over conventional X-ray diffraction as the characterization method in the specific case of Ti–B–C ceramics. Ceramic samples were synthesized by the pulse plasma method starting from high-purity powders of titanium, boron, graphite, and nickel. Different mixtures were heated in a pulsed fashion and sintered by combustion synthesis at various temperatures and time durations, as is the case during empirical optimization of a synthesis procedure. Conventional X-ray diffraction showed the presence of two phases at the end of the sintering process, TiB2 and TiC, irrespective of the conditions employed. Scanning μ-XRF/μ-XRD on the other hand allowed one to detect and visualize the distribution of additional phases present in the sintering products, during which a dependence on sintering conditions was apparent. The μ-XRD results showed that three phases (TiB2, TiC, and TiB) instead of two were present in samples sintered during a short time interval. The addition of metallic Ni to the initial mixture as a sintering facilitator resulted in the formation of a Ni3B phase. All phases proved to have strongly heterogeneous distributions above the 15-μm level with the presence of TiB2 anticorrelated to that of TiC and TiB, emphasizing the necessity of the use of laterally resolved methods of characterization.  相似文献   

17.
Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscope, and N2 adsorption-desorption. Their application in the single-step synthesis of dimethyl ether from syngas was also investigated. The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface. Moreover, the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and little on the type of heat treatment atmosphere. The prepared catalysts can suppress sintering of active sites at high temperatures, and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis. The catalysts perform best using N2 as the heat treatment atmosphere.  相似文献   

18.
The synthesis of carbon nanotubes (CNTs) via chemical vapour deposition of methane on NiO/γ-Al2O3 catalyst has been investigated. The reduction behavior of NiO/γ-Al2O3 by methane was studied using thermogravimetric (TG) and X-ray diffraction (XRD) techniques. It was found that the NiO supported on γ-Al2O3, was reduced to Ni0 in methane atmosphere in the temperature range of 710--770 ℃. The catalytic activity of NiO/γ-Al2O3 for CNTs synthesis by in situ chemical vapour deposition of methane during the reduction was also investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the CNTs produced at various reduction temperatures. The results indicated that the reduction temperature exhibits obvious influence on the morphology and the yield of CNTs. CNTs with the diameter of about 20 nm were obtained at reduction temperature of 750 ℃, and higher reduction temperature (such as 800 and 850 ℃) led to an increase in CNTs diameter and a decrease in CNTs yield.  相似文献   

19.
The present work describes the solvent and catalyst-free synthesis of imidazo[1,2-a]pyridines in excellent to nearly quantitative yields from 2-aminopyridines and a wide variety of ω-bromomethylketones using a grindstone procedure at 25°C to 30°C for 3 to 5 minutes. The absolute structure of the compound, 2-(3-bromophenyl)-7-methylimidazo[1,2-a]pyridine is determined by X-ray crystallography. This green strategy has several noteworthy advantages such as wide spread substrate scope, short reaction times, water work up and the products do not require any chromatographic purification. Moreover, the method does not require any specialized equipment and is highly economical, environmentally benign and easy to carry out in any laboratory. Hence, the developed method meets the concept of “benign by design” and is greener alternative to the reported procedures for the synthesis of imidazo[1,2-a]pyridines.  相似文献   

20.
Trialkyl and triaryl phosphines are important classes of ligands in the field of catalysis and materials research. The wide usability of these low-valent phosphines has led to the design and development of new synthesis routes for a variety of phosphines. In the present work, we report the synthesis and characterization of some mixed arylalkyl tertiary phosphines via the Grignard approach. A new asymmetric phosphine is characterized extensively by multi-spectroscopic techniques. IR and UV–Vis spectra of some selected compounds are also compared and discussed. Density functional theory (DFT)-calculated results support the formation of the new compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号