首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M2UO2(C2O4)2nH2O compounds (M=K, Rb and Cs)have been prepared and characterized by chemical and thermal analyses as well as by X-ray diffraction and infrared spectroscopy. X-ray powder data show that the compounds belong to an orthorhombic system. Thermal and infrared studies show that the compounds decompose to M2UO4 through the formation of alkali metal carbonate and UO2 as intermediates. K2UO2(C2O4)2⋅3H2O, and Rb2UO2(C2O4)2⋅2H2O gave K2UO4, Rb2UO4 at 700 and 600°C respectively, while in the case of Cs2UO2(C2O4)2⋅2H2O, the intermediate products of decomposition reacted to yield Cs2U4O13 at 1000°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The thermal decomposition process of mixtures of CoC2O4⋅2H2O (COD) or Co(HCOO)2⋅2H2O (CFD) or [Co(NH3)6]2(C2O4)3⋅4H2O (HACOT) with activated carbon was studied with simultaneous TG–DTG–DTA measurements under non-isothermal conditions in argon and argon/oxygen admixtures. The results show that the thermal decomposition of the studied mixtures in Ar proceeds in the same manner. It begins with the salt decomposition to Comet+CoO mixture followed by (T>680 K) the simultaneous reduction of CoO to Cometand carbon degasification. The final product of the thermal decomposition of COD-C and CFD-C mixtures, identified by XRD, is β-Co. Cobalt contents determined in the final products fall in the range 71–78 mass%. The rest is amorphous residual carbon. In Ar/O2 admixtures the end product is Co3O4 with ash admixture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
CuL2C4O4 [L=ethane-1,2-diamine (en)], CuL2C4O4⋅2H2O [L=N-methylethane-1,2-diamine (meen), N-ethylethane-1,2-diamine (eten),N-propylethane-1,2-diamine (pren), N-methyl-N’-ethylethane- 1,2-diamine (meeten) andpropane-1,2-diamine (pn)], CuL2C4O4⋅0.5H2O [L=N,N’-dimethylethane- 1,2-diamine (dmeen)], CuL2C4O4⋅4H2O [L=propane-1,2-diamine (pn)]and CuL2C4O4⋅H2O[L=2-methylpropane-1,2-diamine (ibn)] have been synthesized by the addition of respective diamine to finely powdered CuC4O4⋅2H2O and their thermal studies have been carried out in the solid state. Cu(en)2C4O4 upon heating loses one molecule of diamine with shar pcolour change yielding Cu(en)C4O4 which upon further heating transforms to unidentified products. All aquated-bis-diamine species [CuL2C4O4⋅2H2O, CuL2C4O4⋅0.5H2O and CuL2C4O4⋅H2O] upon heating undergo deaquation–anation reaction in the solid state showing thermochromism and transform to CuL2C4O4, which revert on exposure to humid atmosphere (RH ∼90%). All the squarato bis-diamine species, CuL2C4O4, on further heating transform to unidentified products through the formation of CuLC4O4 as intermediates. The mono diamine species, have been isolated pyrolytically in the solid state and can be stored in a desiccator as well as in open atmosphere. They are proposed to be polymeric. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Magnesium ion was reacted with 5,7-dibromo-, 5,7-dichloro-, 7-iodo-and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring to obtain (I) Mg[(C9H4ONBr2)2]·2H2O; (II) Mg[(C9H4ONCl2)2]·3H2O; (III) Mg[(C9H5ONI)2]·2H2O and (IV)Mg[(C9H4ONICl)2]·2.5H2O complexes. The compounds were characterized by elemental analysis, IR spectra, ICP, TG-DTA and DSC. Through thermal decomposition residues were obtained and characterized, by X-ray diffractometry, as a mixture of hexagonal MgBr2 and cubic MgO to the (I) compound at 850°C; cubic MgO to the (II), (III) and (IV) compounds at750, 800 and 700°C, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Hydrazinium oxydiacetate salts of formulae N2H5(Hoda)⋅H2oda, N2H5(Hoda) and (N2H5)2oda (H2oda=oxydiacetic acid) and complexes of the types, M(oda)⋅2N2H4xH2O (where M=Co, Ni and Cd; x=0 for Co and Ni;x=1 for Cd) and Zn(oda)⋅N2H4⋅H2O have been prepared and characterized by analytical, spectral, thermal and X-ray powder diffraction data. IR data document the existence of N2H+ 5 ion in the simple salts and the bidentate coordination of both hydrazine and dianion in the complexes. Complete decomposition of hydrazinium salts takes place via oxydiacetic acid intermediate. Cobalt and nickel complexes decompose in a single step, whereas zinc and cadmium complexes decompose through hydrazinate intermediates. However, all the metal complexes yield metal oxide as the final residue. Isomorphic nature of the cobalt and nickel complexes is evident from XRD data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
By diffusion in gel medium new complexes of formulae: Nd(btc)⋅6H2O, Gd(btc)⋅4.5H2O and Er(btc)·5H2O (where btc=(C6H3(COO)3 3−) were obtained. Isomorphous compounds were crystallized in the form of globules. During heating in air atmosphere they lose stepwise water molecules and then anhydrous complexes decompose to oxides. Hydrothermally synthesized polycrystalline lanthanide trimellitates form two groups of isomorphous compounds. The light lanthanides form very stable compounds of the formula Ln(btc)⋅nH2O (where Ln=Ce−Gd and n=0 for Ce; n=1 for Gd; n=1.5 for La, Pr, Nd; n=2 for Eu, Sm). They dehydrate above 250°C and then immediately decomposition process occurs. Heavy lanthanides form complexes of formula Ln(btc)⋅nH2O (Ln=Dy−Lu). For mostly complexes, dehydration occurs in one step forming stable in wide range temperature compounds. As the final products of thermal decomposition lanthanide oxides are formed.  相似文献   

7.
New hexamethylenetetramine complexes of antimony and bismuth trichloride were synthesized through a solid phase reaction of hexamethylenetetramine and antimony or bismuth trichloride. The formula of the complex is MCl3(C6H12N4)2⋅H2O (M=Sb, Bi).The crystal structure of the complexes belongs to monoclinic system and the lattice parameters: a=1.249 nm, b=1.4583 nm, c=1.6780 nm andβ=91.78° for SbCl3(C6H12N4)2⋅H2O and a=1.3250 nm, b=1.3889 nm, c=1.7449 nm and β=98.94° for BiCl3(C6H12N4)2⋅H2O. Far-infrared spectra reveal that the antimony or bismuth ion is coordinated by the nitrogen atom of the hexamethylenetetramine. The thermal analysis also demonstrates the complex formation between the antimony or bismuth ion and hexamethylenetetramine. The intermediate and final residues in the thermal decomposition process have been analyzed to check the pyrolysis reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The reaction products of Cu(II) 2-chlorobenzoate and the imidazole (1), and of Cu(II) 2,6-dichlorobenzoate and the imidazole (2) formulated as CuL’2⋅2imd⋅2H2O and CuL”2⋅2imd⋅2H2O (L’=C7H4ClO2 , L”=C7H3Cl2O2 , imd=imidazole), were prepared and characterized by means of spectroscopic measurements and thermochemical properties. The blue (1) and green (2) complexes were obtained as solids with a 1:2:2 molar ratio of metal to carboxylate ligand to imidazole. When heated at a heating rate of 10 K min−1 the hydrated complexes, (1) and (2), lose some of the crystallization water molecules and then decompose to gaseous products. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Stoichiometric mixture of powders BaO/WO3, Ba(OH)2/WO3, BaCO3/WO3, BaSO4/WO3 are grinded in a vibrating mill. IR spectra, X-rays diffractions, DTA, TGA. investigation of conductivity and solubility show that
  • – 100% of BaWO4 arise from BaO/WO3 after grinding 5 hours in a vibrating mill,
  • – the degree of interaction decreases in the sequence BaO? Ba(OH)2? BaCO3? BaSO4 corresponding to ΔR G °,
  • – no tribochemical reaction BaSO4/WO3 occurs.
  相似文献   

10.
The study of the dehydration/rehydration of ammonium tris-oxalato aluminate(III) (NH4)3Al(C2O4)3⋅3H2O in flowing dinitrogen saturated with water vapor at room temperature, using thermogravimetric analysis and X-ray diffraction techniques, allowed the determination of the temperature stability domains of (NH4)3Al(C2O4)3⋅3H2O, (NH4)3Al(C2O4)3⋅2H2O and the anhydrous salt. The X-ray powder diffraction profiles are reported for each of the three phases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Barium dioxodiaquaperoxyoxalatouranate was obtained by reaction of uranyl nitrate with oxalic acid and then hydrogen peroxide in the presence of barium ion. The complex was subjected to chemical analysis. The thermal decomposition behaviour of the complex was studied using TG, DTG and DTA techniques. The solid complex salt and the intermediate product of its thermal decomposition were characterized using IR absorption and X-ray diffraction spectra. Based on data from these physico-chemical investigations the structural formula of the complex was proposed as Ba[UO2(O2)(C2O4)(H2O)2]⋅H2O. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
This work describes the synthesis, IR and UV-Vis spectroscopic characterization as well the thermal behavior of the [NiCl2(HIPz)4]⋅C3H6O (1), [Ni(H2O)2(HIPz)4](NO3)2 (2), [Ni(NCS)2(HIPz)4] (3) and [Ni(N3)2(HIPz)4] (4) (HIPz=4-iodopyrazole) pyrazolyl complexes. TG experiments reveal that the compounds 14 undergo thermal decomposition in three or four mass loss steps yielding NiO as final residue, which was identified by X-ray powder diffraction.  相似文献   

13.
Mixed rare earth hydrogen selenite crystals, neodymium praseodymium hydrogen selenite (NdxPr1−x(HSeO3)(SeO3)⋅2H2O), Neodymium samarium hydrogen selenite (NdxSm1−x(HSeO3)(SeO3)⋅2H2O) and praseodymium samarium hydrogen selenite (PrxSm1−x(HSeO3)(SeO3)⋅2H2O) were prepared by gel diffusion technique. Simultaneous thermogravimetric and differential thermal analysis were carried out on the grown crystals. Decomposition is observed to occurs in six steps, which gives the evidence of successive losses of H2O and SeO2. The final product due to decomposition is a mixed rare earth oxides. FT-IR spectrum of the crystal samples heated at different temperatures complemented to the TG-DTA results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The heats of hydration reactions for MgCl2⋅4H2O and MgCl2⋅2H2O include two parts, reaction enthalpy and adsorption heat of aqueous vapor on the surfaces of magnesium chloride hydrates. The hydration heat for the reactions MgCl2⋅4H2O+2H2O→MgCl2⋅6H2O and MgCl2⋅2H2O+2H2O→MgCl2⋅4H2O, measured by DSC-111, is –30.36 and –133.94 kJ mol–1,respectively. The adsorption heat of these hydration processes, measured by head-on chromatography method, is –13.06 and –16.11 kJ mol–1, respectively. The molar enthalpy change for the above two reactions is –16.64 and –118.09 kJ mol–1, respectively. The comparison between the experimental data and the theoretical values for these hydration processes indicates that the results obtained in this study are quite reliable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The new mixed ligand complexes with formulae Co(4-bpy)2L2⋅2H2O (I), Cu(4-bpy)2L2⋅H2O (II) and Cd(4-bpy)L2⋅H2O (III) (4-bpy=4,4'-bipyridine, L=CCl3COO) were prepared. Analysis of the IR spectra indicate that 4-bpy is coordinated with metal ions and carboxylates groups bond as bidentate chelating ligands. The electronic spectra are in accordance with pseudo-octahedral environment around the central metal ion in the Co(II) and Cu(II) complexes. The thermal decomposition of the synthesized complexes was studied in air. A coupled TG-MS system was used to analyse the principal volatile thermal decomposition products of Co(II) and Cu(II) complexes. Corresponding metal oxides were identified as a final product of pyrolysis with intermediate formation of metal chlorides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Zusammenfassung Lösungen von CaCl2 · 2 H2O, BaCl2 · 2 H2O und Zn(CH3CO2)2 · 2 H2O in Dimethylsulfoxid lassen sich anstelle metallorganischer Verbindungen als Standards zur direkten Bestimmung der Additivelemente Ca, Ba und Zn in Schmierölen mittels Atomabsorptionsspektroskopie verwenden. In 10 verschiedenen Ölen wurden die Additive bestimmt. Die mit Atomabsorption erhaltenen Meßergebnisse weichen von den naßchemisch ermittelten um maximal 5% ab.
Direct determination of the additive elements Ca, Ba and Zn in lubricating oilsSolutions of inorganic salts in dimethyl sulphoxide as standards in atomic absorption spectroscopy
For the determination of the additive elements Ca, Ba and Zn in oils by atomic absorption spectroscopy, solutions of CaCl2 · 2 H2O, BaCl2 · 2 H2O and Zn(CH3CO2)2 · 2 H2O in dimethyl sulphoxide can be used as standards instead of metallorganic compounds. The additives in 10 different oil samples have been determined. The results obtained by atomic absorption differ from those gained by conventional analytical methods by 5% at most.
  相似文献   

17.
Hydrates of Barium Chloride. X-ray, Thermoanalytical, Raman, and I.R. Data In the system BaCl2? H2O the hydrates BaCl2 · 2 H2O, BaCl2 · 1 H2O, BaCl2 · 1/2 H2O, and BaCl2 · uH2O were obtained. X-ray powder data, i.r. and Raman spectra, as well as thermoanalytical measurements (TG, DTA) are reported. BaCl2 · 1 H2O and BaCl2 · 1/2 H2O, which are both isotype with the corresponding hydrates of SrCl2, were prepared by dehydration of BaCl2 · 2 H2O or by back hydration of anhydrous BaCl2 with the calculated amounts of water. BaCl2 · uH2O (u ≈? 1) is formed as the primary product by the reaction of anhydrous BaCl2 with water vapour at room temperature. Preparation methods of salt hydrates by controlled back hydration of the anhydrous salts are reported.  相似文献   

18.
A series of nanostructured iron compounds including cubic Fe3O4 and orthorhombic FeOOH were synthesized via a facile low temperature (in the range of 60?100°C) solution method. In the whole process, the interaction between FeCl2·4H2O and methenamine (C6H12N4) was carried out through a reflux device under different reaction conditions such as temperature, solvent, and duration. The samples were detected by XRD, TEM, SAED, physical property measurement system, and Mössbauer spectroscopy, separately. The experiments showed that magnetic mixture nanoparticles had flake and rod morphologies, and cubic Fe3O4 took on grain nanostructure. Magnetism measurements indicated that the saturated magnetization of the as-obtained magnetic mixture was lower than that of the cubic magnetite. Mössbauer spectroscopy testified the sample consisting of cubic magnetite rather than γ-Fe2O3. In addition, a possible growth mechanism of cubic magnetic nanoparticles under different conditions was discussed.  相似文献   

19.
The reactions of ytterbium naphthalene complex C10H8Yb(THF)2 with 2-cyclopentadienylethanol, 1-cyclopentadienylpropan-2-ol, 3-cyclopentadienyl-1-butoxypropan-2-ol, and cyclopentadienyldimethylsilyl-tert-butylamine were studied. The bivalent ytterbium complexes with chelate bifunctional cyclopentadienyl ligands [(η5−C5H5)CH2CH21−O)]Yb(THF), [(η5−C5H5)CH2CH21−O)]Yb(DME). [(η5−C5H5)CH2CH(Me)(η1−O)]Yb(THF), [(η5−C5H5)CH2CH(CH2OC4H9)(η1−O)]Yb(THF), and [(η5−C5H5)SiMe21−N(Bu1))]Yb(THF) were obtained and characterized. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 742–745, April, 2000.  相似文献   

20.
The [60]fulleride of bis(η-hexamethylbenzene)chromium(I) [(η6-C6Me6)2Cr]⋅+[C60]⋅−, and the complexes C60·C6Me6 and C60·C6Et6 were synthesized. Thermal decomposition of [(η6-C6Me6)2Cr]⋅+[C60]⋅− was studied. The molecular structures of C60·C6Me6 and C60·C6Et6 were determined. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 220—224, February, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号