首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanostructured Bi2S3 was hydrothermally produced from Bi2O3 and thiocarbohydrazide in acidic solutions containing PVA, PEG and PVP. By using XRD, SAED and Raman spectrometry, the products were orthorhombic Bi2S3, with four vibration modes at 139.6, 253.7, 310 and 968.9 cm−1. The phase was also in accordance with the diffraction patterns obtained by simulation. SEM, TEM and HRTEM show that the products are clusters of nanorods produced in polymer-free solution, and nanostructured flowers of nanospears, nanorods and nanoplates in the respective PVA-, PEG- and PVP-added solutions, with their growths in the same direction of [0 0 1]. A formation mechanism was also proposed according to their phase and morphologies.  相似文献   

2.
Flower-like and rod-like boehmite has been synthesized using a hydrothermal route in a buffer solution. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR). The SEM and the TEM images of products obtained after different processing times reveal that the buffer solution plays an important role in the rod-like boehmite formation. This approach may allow us to have a better control of the size and morphology of the crystalline boehmite. And the surface area of boehmite hollow microspheres was calculated using Brunauer-Emmett-Teller (BET) model. The possible formation mechanism was proposed and discussed.  相似文献   

3.
Nickel phosphide nanocrystals with various phases have been successfully synthesized via a simple solvothermal route at 180 °C for 16 h, employing nickel chloride and white phosphorus (WP) as starting reactants in the presence of sodium dodecylbenzene sulfonate (SDBS). X-ray powder diffraction (XRD) research showed that the pure Ni12P5 phase with a high yield could be obtained in an ethanol solution, and the pure Ni2P form was prepared in a mixed system with the volume ratio of water/ethanol of 10:10. Namely, the presence of water molecules induced the phase conversion of nickel phosphides. Furthermore, in order to investigate the correlation between properties and phases, as a case, the photocatalytic degradation abilities of two nickel phosphide phases for organic dyes were compared.  相似文献   

4.
Morphology controllable hydroxyapatite (HA) nanoparticles were synthesized using reverse microemulsion (aqueous solution/TX-100/n-butanol/cyclohexane) systems under hydrothermal conditions. The concentration of cetyltrimethylammonium bromide (CTAB) contained in the aqueous solution and pH value had significant effect on the morphology and crystal phases of the final products. All the as-synthesized HA nanoparticles had a larger a value but smaller c value compared with the standard values of the JCPDs card. The existence of CTAB could be attributed to the growth of HA along an axis, but inhibit the growth along the c-axis to some extent. A proposed model was established to explain the change of the lattice parameters.  相似文献   

5.
Nanoparticles of ZnO with the wurtzite structure have been successfully synthesized via a microwave through the decomposition of zinc acetate dihydrate in an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as a solvent. Fundamental characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were conducted for the ZnO nanostructures.To explore the growth mechanism, the samples have been prepared in different irradiation time and also cetyltrimethylammonium bromide (CTAB) has been used as the capping reagent.  相似文献   

6.
Chalcopyrite-type CuInSe2 (CIS) was synthesized from Cu, In and Se powders by a mechanochemical process (MCP) without any additional heating. When the transparent reactor bottle was strongly shaken, the elemental powders underwent an explosive reaction. The reaction generated a large amount of heat accompanied by simultaneous strong light emission. The product was confirmed to be chalcopyrite-type CIS by X-ray powder diffraction analysis. From the results, we categorized that preparation of CIS by MCP is a form of ‘self-propagating high-temperature synthesis’ (SHS) or ‘gasless combustion synthesis’. In ordinary SHS, a reaction is initiated from a sample surface by a heat flux such as a heated wire, electric spark, or laser beam. On the other hand, in the present reaction system (Cu+In+2Se), was naturally ignited only by mechanical stimulation. Following initiation by an external stimulus, the reaction was self continuing via the exothermic heat generated. The reaction mechanism of the preparation of CIS by the MCP is discussed on the basis of present reaction observations and thermochemical data.  相似文献   

7.
In this paper, we report the hydrothermal preparation of Cd(OH)2 nanowires and further conversion to CdO nanobelts, CdS nanowires and CdSe nanoparticles through thermal treatment, solvothermal and mixed-solvothermal routes, respectively. The as-obtained products were characterized by means of powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FEMSEM). Research showed that four cadmium compounds were good photocatalysts for the degradation of organic dyes such as Safranine T and Pyronine B, under irradiation of 365 nm UV light. The order of catalytic activity of different materials was found to be Cd(OH)2<CdO<CdS<CdSe.  相似文献   

8.
Nanocrystalline fluorite-like structures of Ce1−xAlxO2−δ compounds were prepared by the chemical precipitation method using cerium chloride and aluminium chloride as precursors. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). The effects of aluminium doping concentration and annealing on particle size, lattice parameter and band gap energies were investigated. The particle size of Al-doped CeO2 samples were found to decrease with Al concentration and it increases from 6 to 20 nm as annealing temperature increases to 900 °C.  相似文献   

9.
Nanocrystalline fluorite-like structures of Ce1−xFexO2−δ compounds were prepared by chemical precipitation method using cerium chloride and iron chloride as precursors. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). The effects of iron doping concentration and annealing on particle size, lattice parameter and band gap energies were investigated. The particle size of Fe-doped CeO2 samples were found to decrease with iron concentration and it increases from 9 to 26 nm as annealing temperature increases to 900 °C.  相似文献   

10.
Polydispersed ZnO nanoparticles (ZnO1000 and ZnO600) with two different windows of particle size distributions (∼120 and 30 nm) were synthesized using citrate gel route and different annealing treatments (1000 and 600 °C, respectively). Photocatalytic efficiency of these samples was compared with TiO2 in its commercial form-P25, on two dyes, Methylene blue (MB) and Methyl orange (MO). The X-ray diffraction data showed wrutzite ZnO and anatase and rutile phases of P25. UV-visible absorbance spectra of ZnO1000 showed broad absorption range from UV-to-visible (from 382 to 700 nm), as against sharp absorption peaks in UV range for both ZnO600 and P25. The microstructural morphology as seen through scanning electron micrographs showed ZnO1000 with tetrapod-like structures while the ZnO600 showed almost spherical morphologies. Upon subjecting these catalysts to dye solutions in sunlight it was found that both the dyes were completely decolorised within 20 min by ZnO1000, as against partial decolorisation by ZnO600 and P25 ( 53% and 78% for MO and 77% and 88% for MB samples). The effect of catalyst loading (from 125 mg to 1 g) on decolorisation showed that ZnO1000 had good efficiency for all concentrations which was followed by P25 and then by ZnO600. Small perturbations are attributed to the competition between sunlight scattering-induced, reduced irradiation field and the exposed surface area offered by catalyst, which work as active sites for decolorisation. The reusability of the catalysts when studied on fresh dye samples (4 trials), the decolorisation efficiency decreased merely from 99.2% to 99.12% for ZnO1000 as compared to ZnO600 (53.3% to 19.94%) and P25 (78.3% to 31.42%), indicating the efficient reusability of ZnO1000. The effective half life of the catalysts, in terms of number of reuses, were calculated and found to be ∼3 for both ZnO600 and P25 and was >3000 for ZnO1000, which justifies its extremely high reuse. The byproduct analysis (compared with standards prescribed by World Health Organisation (WHO) and Central Pollution Control Board of India (CPCB)) showed cleavage of the chromophore and of other bonds with opening of benzene rings, indicating degradation of the dyes in concurrence with decolorisation, in the stipulated time. Further, cytotoxicity studies performed on SiHa cell lines showed non-toxicity of the byproducts with ZnO1000 as compared to ZnO600 and P25.  相似文献   

11.
BaMoO4 and BaWO4 nanocrystals were synthesized from Ba(NO3)2 and Na2MeO4 (Me=Mo and W) solutions using 50% of 600 W microwave irradiation for 20 min. The products were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectrophotometry. They show that the products are good dispersed nanocrystals (poly-nanocrystals) of single-phase scheelite tetragonal structure with the vibration modes corresponding to the molybdate and tungstate compounds. Their photoluminescence was detected at 415 and 392 nm for BaMoO4 and BaWO4, respectively.  相似文献   

12.
α-Fe2O3-In2O3 mixed oxide nanoparticles system has been synthesized by hydrothermal supercritical and postannealing route, starting with (1−x)Fe(NO3)3·9H2xIn(NO3)3·5H2O aqueous solution (x=0-1). X-ray diffraction and Mössbauer spectroscopy have been used to study the phase structure and substitutions in the nanosized samples. The concentration regions for the existence of the solid solutions in the α-Fe2O3-In2O3 nanoparticle system together with the solubility limits of In3+ ions in the hematite lattice and of Fe3+ ions in the cubic In2O3 structure have been evidenced. In general, the substitution level is considerably lower than the nominal concentration x. A justification of the processes leading to the formation of iron and indium phases in the investigated supercritical hydrothermal system has been given.  相似文献   

13.
Titanate nanotubes (TNTs) were prepared from TiO2 P25 via hydrothermal method. The reaction temperature was 130 or 140 °C and the reaction time was 24 or 48 h. The samples were characterized by transmission electron microscopy, X-ray diffraction, thermogravimetry and N2 adsorption as well as Raman, FTIR-DRS and UV-vis/DR spectroscopy. The obtained samples exhibited similar properties, regardless of the preparation temperature and time. The most notable difference between properties of TNTs prepared under different conditions was observed in case of BET surface area, which was increasing from 386 to 478 m2/g along with increasing the reaction time and temperature. Based on TEM, XRD and TG measurements we have suggested that the structure of TNTs was H2Ti2O4(OH)2. The TEM and Raman spectroscopy measurements showed that the obtained products contained also low amount of anatase phase. The TNTs exhibited no photoactivity towards degradation of model azo dye Acid Red 18. However, TNTs were successfully applied for photocatalytic generation of CH4 and H2 in a solution of acetic acid. The amount of methane produced with application of TNTs synthesized at 140 °C was about 2.5 times higher than that generated with use of TiO2 P25. To the best of our knowledge this is a first report on the photocatalytic generation of hydrocarbons using TNTs in the current state of the art.  相似文献   

14.
We report the formation of mesoporous zinc sulphide, composed by the fine network of nanoparticles, which was formed via a single precursor Zn(SOCCH3)2Lut2 complex. The complex was chemically synthesized using zinc carbonate basic, 3,5-lutidine and thioacetic acid, in air. The metal precursor complex was characterized using different conventional techniques. Thermogravimetric analysis (TGA) result indicates that the decomposition of the complex starts at 100 °C and continues up to 450 °C, finally yielding ZnS. ZnS nanocrystals were characterized by powder X-ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), N2-sorption isotherm, UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The grain diameter of nanocrystals was found to be 4-5 nm. The material followed Type-IV N2-sorption isotherm, which is the characteristic of mesoporous materials. The band gap energy, as obtained from optical measurements was around 3.8 eV.  相似文献   

15.
We prepared NaNbO3 by several methods, namely solid-state reaction (SSR), hydrothermal (HT) and polymerized complex (PC) methods, and investigated the relationships between the photocatalytic activity and the particle size and morphology. The photocatalytic activity was evaluated by H2 evolution from an aqueous methanol solution and pure water splitting in the presence of the Pt(0.5 wt%)/NaNbO3 and RuO2(1.25 wt%)/NaNbO3, respectively. It is found that the sample prepared by PC with smallest particles exhibits the highest photocatalytic activity in both reactions. Moreover, the HT sample with the cubic and rectangular shape also shows the enhanced photocatalytic activity for H2 evolution from an aqueous methanol solution in comparison with that of the sample prepared by SSR.  相似文献   

16.
N-doped titania was prepared continuously by one-step synthetic method under supercritical and subcritical water conditions using titanium(IV)tetraisopropoxide (TTIP) and nitric acid as a titania precursor and nitrogen source, respectively. The synthesized N-doped titania particles were characterized by XRD, N2-adsorption, TEM, XPS, UV-vis diffuse reflectance spectroscopy. N-doped titania was successfully synthesized and its crystalline structure was homogenous anatase phase with high surface area. The absorption edge of synthesized N-doped titania shifted into the visible light region compared with commercial titania P25. All synthesized N-doped titania have higher photocatalytic activity than P25 under visible light irradiation. The photocatalytic activity of N-doped titania synthesized under supercritical water condition was the highest for the degradation of methyl orange under visible light due to the larger crystallite size compared with the N-doped titania synthesized under subcritical water condition.  相似文献   

17.
Using Cu(S2CNEt2)2 as a single-source precursor and ethylamine solution (65-70%) as the reaction medium, large-scale flower-like CuS microspheres have been synthesized via a solvothermal treatment in the presence of a surfactant. The products were characterized by XRD, SEM, TEM, HRTEM, and UV-vis spectrum. The assembled microspheres, with a diameter of about 2-3 μm, were composed of single-crystalline hexagonal CuS nanoflakes with a thickness of several tens of nanometers. It was revealed that the solvent medium, the surfactant, and the reaction time have great influence on the morphology and size of the resulting CuS products.  相似文献   

18.
In the present study we have synthesized CdS semiconducting quantum dots by the chemical precipitation method using Thioglycerol as the capping agent. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) are employed to characterize the size, morphology and crystalline structure of the as-prepared material. The synthesized QPs have a mixture of cubical and hexagonal crystal symmetry with 12 nm average diameter. Ultraviolet-visible (UV-vis) absorption spectroscopy is used to calculate the band gap of the material and blue shift in absorption edge. Confinement of the optical phonon modes in the QPs is studied by Raman spectroscopy, while FTIR for identification of chemical bonds in the nanomaterial. Multiple cadmium and sulphur defects were observed by employing the photoluminescence (PL) method.  相似文献   

19.
P-doped TiO2 nanoparticles were synthesized through hydrolysis and condensation of Ti(OC2H5)4 with H3PO4 additions. Effects of [H3PO4]/[Ti(OC2H5)4] molar ratios on the anatase-to-rutile phase transformation, crystallite sizes, surface areas, and photocatalytic abilities of the gel-derived P-doped TiO2 were investigated. The P-doped TiO2 nanoparticles prepared by [H3PO4]/[Ti(OC2H5)4]=0.03 were composed of anatase monophase even at 900 oC and possessed very strong photocatalytic ability. Kinetic studies on the P-doped TiO2 to photocatalytically decompose methylene blue under irradiation of 365 nm UV light found that the P-doped TiO2 prepared by [H3PO4]/[Ti(OC2H5)4]=0.03 and calcined at 800 oC had the specific reaction rates, at 25 °C, kA,m=0.76 m3/(kg min) (based on the mass of P-doped TiO2) and kA,BET=46.2×10−6 m/min (based on the BET surface area of P-doped TiO2), which is superior to the performance of a commercial product, P25 (kA,m=0.22 m3/(kg min) and kA,BET=4.8×10−6 m/min).  相似文献   

20.
Layered double hydroxides (LDHs) are a class of artificially constructed materials that have potential applications in a wide range of fields, including biomedical research and drug development. In this study, we have successfully intercalated folic acid into LDH using two different approaches: co-precipitation and ion exchange. The resultant LDH-folic acid constructs were then characterized by powdered sample X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), thermogravimetry and differential thermal analysis (TG-DTA). XRD data demonstrated that folic acid molecules remained intact and stable between the hydroxide layers in LDH particles constructed by both co-precipitation and ion-exchange methods, with interlayer spacings of 15.3 and 16.0 Å, respectively. Particle size and surface topography were also determined using TEM. Cytotoxicity test revealed that neither LDH nor LDH-folic acid nanohybrids were toxic to the cell line 293T, suggesting that they can be used as a safe and noncytotoxic drug delivery system. Furthermore, the buffering effect of the intercalated LDH was evaluated. This work provides fundamental insights and technical details for utilizing biofunctional molecules that can form nanobiohybrid particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号