首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a rapid and sensitive high-performance liquid chromatography/electrospray tandem mass spectrometry (HPLC/ESI-MS/MS) method for simultaneous determination of the most relevant metabolites of benzene and toluene, t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA), and S-benzylmercapturic acid (S-BMA). Urine samples were purified before analysis by solid-phase microextraction (SPE) on SAX cartridges with 50 mg sorbent mass. The developed method fulfils all the standard requirements of precision and accuracy. Calibration curves were linear within the concentration range of the standards (0-80 microg/L(urine) for t,t-MA, and 0-25 microg/L(urine) for S-PMA and S-BMA), and had correlation coefficients > or =0.997. Limits of detection were 6.0 microg/L for t,t-MA, 0.3 microg/L for S-PMA, and 0.4 microg/L for S-BMA. The method was used to determine t,t-MA, S-PMA and S-BMA levels in urine of 31 gasoline-station workers, with personal monitoring data obtained from radial symmetry passive diffusive samplers. In the context of mean work-shift exposures of 75.9 microg/m(3) (range 9.4-220.2) for benzene and 331.9 microg/m(3) (78.2-932.1) for toluene, metabolite concentrations in end-of-shift urine samples ranged from 23.5-275.3 microg/g(creatinine) for t,t-MA, non-detectable to 0.9 microg/g(creatinine) for S-PMA, and 3.8-74.8 microg/g(creatinine) for S-BMA. No significant correlation was found between the environmental concentrations and urinary metabolites (p > 0.05 for all cases); the ratios of benzene metabolites could be influenced by exposure levels and co-exposure to xylenes and toluene. The high throughput of this procedure should facilitate exploration of the metabolic effects of benzene-related co-exposure to toluene and alkylbenzenes in large populations of subjects exposed to gasoline.  相似文献   

2.
Barbeau D  Maître A  Marques M 《The Analyst》2011,136(6):1183-1191
Many workers and also the general population are exposed to polycyclic aromatic hydrocarbons (PAHs), and benzo[a]pyrene (BaP) was recently classified as carcinogenic for humans (group 1) by the International Agency for Research on Cancer. Biomonitoring of PAHs exposure is usually performed by urinary 1-hydroxypyrene (1-OHP) analysis. 1-OHP is a metabolite of pyrene, a non-carcinogenic PAH. In this work, we developed a very simple but highly sensitive analytical method of quantifying one urinary metabolite of BaP, 3-hydroxybenzo[a]pyrene (3-OHBaP), to evaluate carcinogenic PAHs exposure. After hydrolysis of 10 mL urine for two hours and concentration by automated off-line solid phase extraction, the sample was injected in a column-switching high-performance liquid chromatography fluorescence detection system. The limit of quantification was 0.2 pmol L(-1) (0.05 ng L(-1)) and the limit of detection was estimated at 0.07 pmol L(-1) (0.02 ng L(-1)). Linearity was established for 3-OHBaP concentrations ranging from 0.4 to 74.5 pmol L(-1) (0.1 to 20 ng L(-1)). Relative within-day standard deviation was less than 3% and relative between-day standard deviation was less than 4%. In non-occupationally exposed subjects, median concentrations for smokers compared with non-smokers were 3.5 times higher for 1-OHP (p<0.001) and 2 times higher for 3-OHBaP (p<0.05). The two urinary biomarkers were correlated in smokers (ρ=0.636; p<0.05; n=10) but not in non-smokers (ρ=0.09; p>0.05; n=21).  相似文献   

3.
Mercapturic acids are highly important and specific biomarkers of exposure to carcinogenic substances in occupational and environmental medicine. We have developed and validated a reliable, specific and very sensitive method for the simultaneous determination of five mercapturic acids derived from several high-production chemicals used in industry, namely ethylene oxide, propylene oxide, acrylamide, acrolein and N,N-dimethylformamide. Analytes are enriched and cleaned up from urinary matrix by offline solid-phase extraction. The mercapturic acids are subsequently separated by means of high-performance liquid chromatography on a Luna C8 (2) column and specifically quantified by tandem mass spectrometric detection using isotopically labelled analytes as internal standards. The limits of detection (LODs) for N-acetyl-S-2-carbamoylethylcysteine (AAMA) and N-acetyl-S-2-hydroxyethylcysteine (HEMA) were 2.5 microg/L and 0.5 microg/L urine, while for N-acetyl-S-3-hydroxypropylcysteine (3-HPMA), N-acetyl-S-2-hydroxypropylcysteine (2-HPMA) and N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) it was 5 microg/L. These LODs were sufficient to detect the background exposure of the general population. We applied the method on spot urine samples of 28 subjects of the general population with no known occupational exposure to these substances. Median levels for AAMA, HEMA, 3-HPMA, 2-HPMA and AMCC in non-smokers (n = 14) were 52.6, 2.0, 155, 7.1 and 113.6 microg/L, respectively. In smokers (n = 14), median levels for AAMA, HEMA, 3-HPMA, 2-HPMA and AMCC were 243, 5.3, 1681, 41.7 and 822 microg/L, respectively. Due to the simultaneous quantification of these mercapturic acids, our method is well suited for the screening of workers with multiple chemical exposures as well as the determination of the background excretion of the general population.  相似文献   

4.
刘黎文  宋世震  胡霞敏  叶方立 《色谱》2006,24(3):260-262
建立了高效液相色谱测定职业苯接触者尿中苯的代谢物反,反-粘糠酸(tt-MA)的方法。该方法采用C18柱进行分离,以冰乙酸-四氢呋喃-甲醇-水(体积比为1∶2∶10∶87)为流动相,以香草酸为内标,于264 nm处进行紫外检测。尿样经2 mol/L盐酸酸化后用乙酸乙酯进行萃取。结果表明,所建立的标准曲线在tt-MA的质量浓度为0.10~10.00 mg/L时线性关系良好(r=0.9999),加标回收率为95.1%~100.5%,日内和日间测定的相对标准偏差分别为4.0%~9.0%和6.2%~8.8%。应用该法测定职业苯接触者56人和非职业苯接触者24人尿中的tt-MA,结果显示职业苯接触者的尿中tt-MA含量明显高于非职业苯接触者,并与接触的苯的浓度呈线性相关(P<0.01)。该方法灵敏、快速、经济、简便,可用于职业苯接触者的生物监测和毒物动力学研究。  相似文献   

5.
Acrylamide has been reported to be present in high-temperature processed foods and normal processed food intake could lead to significant acrylamide exposure. Acrylamide in vivo can be conjugated with glutathione in the presence of glutathione transferase. This conjugation product is further metabolized and excreted as N-acetyl-S-(propionamide)cysteine (NASPC) in the urine. NASPC could be considered a biomarker for acrylamide exposure. The objective of this study was to develop a highly specific, rapid and sensitive method to quantify urinary NASPC, serving as a biomarker for acrylamide exposure assessment. Isotope-labeled [13C3]NASPC was successfully synthesized and used as an internal standard. This urine mixture was directly analyzed using a newly developed liquid chromatographic/tandem mass spectrometric method coupled with an on-line clean-up system. The detection limit for this method was estimated as < 5 microg l(-1)(0.4 pmol) on-column. The method was applied to measure the urinary level of NASPC in 70 apparently health subjects. The results showed that the NASPC urinary level was highly associated with smoking. Smokers had a significantly higher urinary NASPC level (135 +/- 88 microg g(-1) creatinine) than non-smokers (76 +/- 30 microg g(-1) creatinine). A highly sensitive and selective LC/MS/MS isotope dilution method was successfully established. With an on-line clean-up system, this system is capable of routine high-throughput analysis and accurate quantitation of NASPC in urine. This could be a useful tool for health surveillance for acrylamide exposure in a population for future study.  相似文献   

6.
A rapid, highly specific and sensitive isotope-dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) method coupled with an on-line solid-phase extraction (SPE) system was developed to measure N7-methylguanine (N7-MeG) in urine. 15N5-Labeled N7-MeG was synthesized to serve as an internal standard, and an on-line SPE cartridge was used for on-line sample cleanup and enrichment. The urine sample can be directly analyzed within 15 min without prior sample purification. The detection limit for this method was estimated as 8.0 pg/mL (4.8 pmol) on-column. This method was further applied to study exposure to methylating agents arising from cigarette smoke. Sixty-seven volunteers were recruited, including 32 regular smokers and 35 nonsmokers. Urinary cotinine, a major metabolite of nicotine, was also determined using an isotope-dilution LC/MS/MS method. The results showed that urinary levels of N7-MeG observed in smokers (4215 +/- 1739 ng/mg creatinine) were significantly (P < 0.01) higher than those in nonsmokers (3035 +/- 720 ng/mg creatinine). It was further noted that the urinary level of N7-MeG was found to be correlated with that of cotinine for smokers, implying that cigarette smoking resulted in increased DNA methylation, followed by depurination and excretion of N7-MeG in urine. As a result of the on-line extraction system, this method is capable of routine high-throughput analysis and accurate quantitation of N7-MeG, and could be a useful tool for health surveillance of methylating agent exposure.  相似文献   

7.
Benzene is known to be toxic and carcinogenic: therefore, in case of exposure to benzene vapours, a reliable biological monitoring procedure is needed, particularly in the field of occupational hygiene. The determination of the concentration of benzene in the exhaled air 8 h after the exposure has been demonstrated to be a significant biomarker, even for low concentrations of airborne benzene vapours. This work presents a sampling and analysis method that optimizes previously described procedures: in the sampling phase, a double-step sample collection in Tedlar bags is used, in order to remove the breath moisture and to standardise the sample volumes. The analytical phase uses a cryogenic trap for the concentration of the air samples to be injected in the GC-MS, without the need for trapping materials, significantly reducing time and costs of the analysis and improving sensitivity. The presented method has been successfully applied to the biological monitoring of a mixed population (occupationally exposed and not exposed subjects, smokers and non-smokers), with a lower detection limit of 1.5 ng of benzene per litre of exhaled air, that is 1/200 of the biological exposure index recommended by the American Conference of Governmental Hygienists.  相似文献   

8.
Non-invasive validation of cigarette- or cigar-smoking behaviour is necessary for large population studies. Urine or saliva samples can be used for confirmation of recent nicotine intake by analysis of cotinine, the major metabolite of nicotine. However, this test is not suitable for validation of survey data, since the quantification of cotinine in saliva only reflects nicotine exposure during the preceding week. To validate information on tobacco use, we investigated hair samples for quantifying nicotine and cotinine by gas chromatography-mass spectrometry. Hair (about 50-100 mg) was incubated in 1 M sodium hydroxide at 100 degrees C for 10 min. After cooling, samples were extracted by diethyl ether, using ketamine as an internal standard. Drugs were separated on a 12-m BP-5 capillary column, and detected using selected-ion monitoring (m/z 84, 98 and 180 for nicotine, cotinine and ketamine, respectively). Hair from non-smokers and smokers contained nicotine and cotinine. Although it is difficult to determine an absolute cut-off concentration, more than 2 ng of nicotine per milligram of hair can be used to differentiate smokers from non-smokers. Some applications of this technique are developed to determine the status of passive smokers, the gestational exposure in babies and the pattern of an individual's nicotine use by cutting strands of hair into sections of one-month intervals.  相似文献   

9.
The validation of an analytical method for the measurement of the unnatural amino acid alpha-fluoro-beta-alanine (AFBA), the main metabolite of the antineoplastic drug 5-fluorouracil (5FU), in urine for the biological monitoring of the exposure of hospital workers to the drug when preparing the therapeutical doses and administering to cancer patients is described. The method employed a two-step extractive derivatization of the analyte from urine to the N-trifluoroacety-n-butyl ester derivative and detection by selected-ion monitoring gas chromatography-mass spectrometry of structurally specific fragments. The limit of detection was 20 ng/mL with quantification accuracy better than +/-20% and precision (CV%) better than +/-20% in the range 0.020-10 microg/mL. Norleucine was used as the internal standard and the sample-to-sample analysis time was less than 15 min. The validated method has been applied to the biological monitoring of some hospital workers potentially exposed to 5FU and to matched control subjects. On a total number of 65 analyzed urine samples from control and exposed subjects, only three, obtained from exposed subjects, were found to be positive, with values of 20, 30 and 1150 ng/mL, respectively.  相似文献   

10.
A gas chromatography-mass spectroscopic method in electron ionization (EI) mode with MS/MS ion preparation using helium at flow rate 1 ml min(-1) as carrier gas on DB-5 capillary column (30 m x 0.25 mm i.d. film thickness 0.25 microm) has been developed for the determination of benzene in indoor air. The detection limit for benzene was 0.002 microg ml(-1) with S/N: 4 (S: 66, N: 14). The benzene concentration for cooks during cooking time in indoor kitchen using dung fuel was 114.1 microg m(-3) while it was 6.6 microg m(-3) for open type kitchen. The benzene concentration was significantly higher (p < 0.01) in indoor kitchen with respect to open type kitchen using dung fuels. The wood fuel produces 36.5 microg m(-3) of benzene in indoor kitchen. The concentration of benzene in indoor kitchen using wood fuel was significantly (p < 0.01) lower in comparison to dung fuel. This method may be helpful for environmental analytical chemist dealing with GC-MS in confirmation and quantification of benzene in environmental samples with health risk exposure assessment.  相似文献   

11.
Volatile organic compounds (VOCs) are ubiquitous in the environment, originating from many different natural and anthropogenic sources, including tobacco smoke. Long-term exposure to certain VOCs may increase the risk for cancer, birth defects, and neurocognitive impairment. Therefore, VOC exposure is an area of significant public health concern. Urinary VOC metabolites are useful biomarkers for assessing VOC exposure because of non-invasiveness of sampling and longer physiological half-lives of urinary metabolites compared with VOCs in blood and breath. We developed a method using reversed-phase ultra high performance liquid chromatography (UPLC) coupled with electrospray ionization tandem mass spectrometry (ESI/MSMS) to simultaneously quantify 28 urinary VOC metabolites as biomarkers of exposure. We describe a method that monitors metabolites of acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon-disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride and xylene. The method is accurate (mean accuracy for spiked matrix ranged from 84 to104%), sensitive (limit of detection ranged from 0.5 to 20 ng mL−1) and precise (the relative standard deviations ranged from 2.5 to 11%). We applied this method to urine samples collected from 1203 non-smokers and 347 smokers and demonstrated that smokers have significantly elevated levels of tobacco-related biomarkers compared to non-smokers. We found significant (p < 0.0001) correlations between serum cotinine and most of the tobacco-related biomarkers measured. These findings confirm that this method can effectively quantify urinary VOC metabolites in a population exposed to volatile organics.  相似文献   

12.
Acephate is a commonly used organophosphate insecticide applied on agricultural crops and in residential communities. Because very little acephate is metabolized prior to excretion, the parent pesticide compound can be measured in human urine. The residue method must be sensitive enough to determine human exposure and potential health risk for both agricultural workers and their families who may be exposed by pesticide drift or by inadvertent carry-home residues. A reliable and sensitive method was developed to measure acephate concentrations in human urine. Urine was diluted with water and acetone, adjusted to a neutral pH, and partitioned twice in acetone-methylene chloride (1 + 1, v/v), with NaCl added to aid separation. The solvent-reduced organic phase extracts were clarified by activated charcoal solid-phase extraction and then adjusted to a final volume with the addition of a D-xylose analyte protectant solution to reduce matrix enhancement effects. Acephate concentrations in urine were determined by gas chromatography using pulsed flame photometric detection. The method limit of detection was established at 2 microg/L, with a method limit of quantitation of 10 microg/L. The average recovery from urine fortified with 10-500 microg/L was 102 +/- 12% (n = 32).  相似文献   

13.
A simple analysis of volatile organic compounds (VOCs), such as benzene, toluene, m,p-xylene, and o-xylene, at low levels in the atmosphere was conducted using passive samplers. The methods were applied to analyzing the behavior and origin of VOCs in Kyoto City. The passive samplers were exposed for 7 - 14 days at sampling sites in Kyoto City and for 30 days in the mountains (Mt. Hiei and Mt. Daimonji). Shibata gas-tube samplers packed with activated carbon were used for the determination of VOCs. The absorbed VOCs were extracted into carbon disulfide (CS2) and measured by FID-GC. The determination limits and relative standard deviations for VOCs were 0.3 microg/m3 and 3%, respectively. The samplers were set up at 5 sites in March, 2001 and at 13 stations on Mt. Hiei in November, 2002. The average concentrations of ambient benzene, which were higher than the environmental criterion (3.0 microg/m3), except for those on Mt. Daimonji from March, 2001, to February, 2002, decreased to below 3.0 microg/m3 from March, 2002, to February, 2003. The decrease in ambient benzene may have been due to a decrease in the benzene content in gasoline by the end of 1999, and also by implementation of the Pollutant Release and Transfer Register (PRTR) Act in 2001.  相似文献   

14.
S-phenylmercapturic acid is widely accepted as a specific biomarker for the evaluation of benzene exposure. Here, we describe a fast, specific and sensitive high-performance liquid achromatography coupled with tandem mass spectrometry (LC-MS/MS) method that has been developed and validated for the determination of S-phenylmercapturic acid in human urine. Isotope-labeled S-phenylmercapturic acid-d5 was used as internal standard to improve the method ruggedness. The fully automated solid-phase extraction method on a 96-well Oasis MAX (mix-mode anion exchange) plate was employed to clean up the urine samples before analysis. The rapid LC-MS/MS analysis of extracted samples was achieved on a Genesis C18 column with a run time of only 3 min. Negative electrospray ionization with multiple reaction monitoring (ESI-MRM) mode was used to detect S-phenylmercapturic acid (m/z 238 --> 109) and S-phenylmercapturic acid -d5 (m/z 243 --> 114). The method fulfils all the standard requirements of method validation. The calibration curve was linear within the concentration range 0.400-200 ng/mL. The method performed accurately and precisely in validation with <7.5% relative error and <6.5% relative standard deviation of quality control samples. The method efficacy was also verified by the analysis of urine samples from 12 smokers and 12 non-smokers. With the fully automated sample cleanup procedure and the fast LC-MS/MS analysis, a sample analysis throughput of 384 samples per day could be achieved.  相似文献   

15.
An analytical method was established for the determination of benzene and 13 of its alkyl derivatives. The method was applied to a survey of indoor pollution that investigated the usefulness of the method, concentration levels, seasonal variations, profiles, correlations between compounds, and factors that affected indoor pollution by these compounds. The survey was performed in 21 houses in the summer of 1999 and 20 houses in the winter of 1999-2000 in Fuji, Japan. All the target compounds were detected in the indoor and outdoor air of all houses. Outdoor concentrations of benzene ranged from 0.779 to 3.17 microg/m3 in summer and from 1.35 to 6.04 microg/m3 in winter, whereas indoor concentrations of benzene ranged from 0.694 to 3.11 microg/m3 in summer and from 1.65 to 6.89 microg/m3 in winter. Indoor concentrations of the target compounds, except for benzene, were elevated, compared with outdoor concentrations. Because indoor and outdoor concentrations of benzene and its derivatives in summer were lower than in winter, the emission of these compounds may be increased by use of a heater and other variables present in winter. Profiles of the compounds, correlations between the compounds, and factors that affected indoor pollution (determined by multiple regression analysis) were investigated. These results suggested that indoor benzene predominantly penetrated from outdoors and that other benzene derivatives were emitted from indoor sources, such as paint solvents and kerosene heaters.  相似文献   

16.
A simple, rapid, and solvent-free method for quantitative determination of benzene, toluene, and Xylene in exposed Drosophila larvae was developed using headspace solid-phase microextraction (HS-SPME) coupled to GC/MS. Larvae fed on standard Drosophila food mixed with benzene, toluene, and Xylene for 48 h were homogenized in Milli-Q water. Extraction of benzene, toluene, and Xylene was performed at 65 degrees C for 30 min on the SPME fiber (silica-fused). Subsequently, the fiber was desorbed in the GC injection port, followed by GC/MS analysis in the selected-ion monitoring mode. An external calibration curve was used for the quantification of benzene, toluene, and Xylene in the exposed organism. Recoveries were in the range of 78-82% (intraday) and 76-81% (interday) in larvae, and 91-96% (intraday) and 87-92% (interday) in the diet. LOD with an S/N of 3:1 and LOQ with an S/N of 10:1 were in the range of 0.01-0.023 and 0.034-0.077 microg/L, respectively. Percent RSD values for benzene, toluene, and Xylene were in the range of 0.50-0.81 (intraday) and 0.89-1.23 (interday) for retention time, and 2.16--3.85 (intraday) and 2.99-4.95 (interday) for peak concentration, showing good repeatability. This method was sensitive enough to quantitate benzene, toluene, and Xylene in small exposed organisms like Drosophila larvae. The SPME/GC/MS method developed may have wider applications in various in vivo toxicological studies.  相似文献   

17.
为观察二硫化碳(CS2)对机体铜,锌水平的影响,对某化纤厂35名接触CS2工人和41名非接触工人的血铜,锌值进行调查,比较,并进行了动物染毒实验。SD大鼠吸入CS2浓度分别为5和50mg/m^3,每日5h,每周6d,连续6个月,于染毒2,4,6个月时测定血浆铜,锌值及染毒6个月时肝脏铜,锌含量。结果显示,CS2接触组工人血铜,锌水平较对照组显著降低(P<0.05)。在CS2染毒6个月时,50mg/m^3 CS2染毒组血浆及肝脏铜水平均较对照组及5mg/m^3 CS2染毒组显著降低(P<0.05)。可见接触CS2能干扰机体铜,锌代谢,导致体内铜,锌含量减少。  相似文献   

18.
A high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS-MS) method is presented and evaluated for the determination of S-benzylmercapturic acid (S-BMA) and S-phenylmercapturic acid (S-PMA) in human urine. Both of these compounds are important for occupational health owing to their use as biomarkers of exposure to toluene and benzene, respectively. Toluene is used extensively as a solvent, and the health hazards of benzene have been well established. The optimized urine sample preparation scheme consists of solid-phase extraction (SPE) followed by an acetone wash. The chromatographic analysis consists of a reversed-phase gradient system, which uses electrospray ionization in negative-ion mode with a triple-quadrupole mass spectrometric detector. Accuracy and precision of this method are demonstrated by a series of recovery studies of spiked human urine and synthetic urine substitute. Spike levels at 1, 2, 6, 8, and 30 ng/mL for both analytes demonstrate average recoveries (accuracy) ranging from 99 to 110%. Precision as measured by the relative standard deviation (%RSD) of multiple samples (n=9) at each concentration level was 5.3% or less for both analytes in urine. The limit of detection (LOD) is approximately 0.2 ng/mL for S-BMA and S-PMA. This data, other figures of merit and other factors, such as ion suppression of the electrospray ionization source, are discussed.  相似文献   

19.
In order to investigate the arsenic level in serum and packed cells of patients with renal insufficiency, total arsenic (As) concentrations were determined with hydride generation atomic absorption spectrometry (HGAAS) in serum (S) and packed cells (PC) of 31 non-dialyzed patients. The accuracy of the method was tested by the analysis of arsenic in 3 certified reference materials. Patients showed a three-fold increase of arsenic concentrations in serum and a two-fold increase of arsenic in packed cells compared with controls. Patients (n=10) with higher serum creatinine (>2.0 mg/dL), urea (>0.70 g/L) and urinary protein (mean+/-SD: 1.12+/-0.82 g/L) showed higher arsenic concentrations (5.8+/-3.3 microg/L in serum and 18.0+/-16.7 microg/kg in packed cells) compared with those with lower creatinine (<1.6 mg/dL), urea (<0.6 g/L) and urinary protein (mean+/-SD: 0.27+/-0.82 g/L) (n=16, serum arsenic 1.2+/-1.2 microg/L, packed cells arsenic 2.6+/-1.9 microg/kg). The significant differences (both p < 0.001) in S and PC-arsenic levels of patients in group I and II implies a relationship between the arsenic level and the degree of chronic renal insufficiency.  相似文献   

20.
A new method for the determination of benzene at trace levels in air is presented. The method consists of the collection of air samples on adsorbent cartridges with simultaneous adsorption of pre-established amounts of D6-labeled internal standard. Desorption from the cartridge is performed by solid-phase microextraction (SPME) with analysis by gas chromatography/mass spectrometry (GC/MS) using an ion trap mass spectrometer. The influence of several parameters (type of SPME fiber, temperature, time, for example) was investigated, and good linearity in the range 10-400 ng of C6D6, with a coefficient of variance (CV) around 3-5%, was obtained. The method was tested by sampling air in a town center in Italy, and a benzene concentration of approximately 50 microg/m(3) was determined. The maximum limit recommended by the European Community is 10 microg/m(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号