首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of chromium from aqueous solution using chitosan beads   总被引:1,自引:0,他引:1  
A basic investigation on the removal of Cr(III) and Cr(VI) ions from aqueous solution by chitosan beads was conducted in a batch adsorption system. The chitosan beads were prepared by casting an acidic chitosan solution into an alkaline solution. The influence of different experimental parameters; pH, agitation period and different concentration of Cr(III) and Cr(VI) ions was evaluated. A pH 5.0 was found to be an optimum pH for Cr(III) adsorption, and meanwhile pH 3.0 was the optimum pH for the adsorption of Cr(VI) onto chitosan beads. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Cr(III) and Cr(VI) onto chitosan beads. Results indicated that Cr(III) and Cr(VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacities of Cr(III) and Cr(VI) ions onto chitosan beads were 30.03 and 76.92 mg g−1, respectively. Results showed that chitosan beads are favourable adsorbents. The Cr(III) and Cr(VI) ions can be removed from the chitosan beads by treatment with an aqueous EDTA solution.  相似文献   

2.
使用盐酸对吸附剂活性炭纤维(activated carbon fiber,ACF)进行改性,通过SEM、BET和FTIR对改性前后的ACF形貌及结构进行系统表征发现,改性后ACF较改性前表面杂质减少且沟壑更加明显,比表面积提高22%,微孔体积增加5%,含氧官能团(C-O和C=O)明显增多. 以水中重金属离子(Zn(II)及Cr(VI))和抗生素磺胺甲恶唑(Sulfamethoxazole,SMX)为目标污染物,研究改性后ACF对目标污染物的吸附(静吸附和电吸附)性能,考察了浓度、pH、外加电压对吸附的影响. 结果表明,ACF用量为5 g,电压为1.2 V,Zn(II)、Cr(VI)及SMX浓度均为10 mg·L-1,Zn(II)溶液pH为5时,ACF吸附水中Zn(II)的最大吸附量为9.25 mg·g-1,是静吸附条件的2.15倍;Cr(VI)溶液pH为4时,ACF吸附Cr(VI)的最大吸附量为8.86 mg·g-1,是静吸附条件的1.96倍;SMX溶液pH为6时,ACF吸附SMX的最大吸附量为8.32 mg·g-1,是静吸附条件的1.84倍. ACF吸附Zn(II)、Cr(VI)及SMX的动力学曲线均符合准二级动力学模型,吸附过程为化学吸附. Freundlich等温模型能更好地描述ACF对Zn(II)、Cr(VI)及SMX的吸附特性,其吸附形式为多分子层吸附. ACF通过电极反接方式进行循环再生,脱附速率快且脱附效果明显,经4次循环再生后,ACF对Zn(II)、Cr(VI)及SMX的去除率均在90%以上.  相似文献   

3.
A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L−1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g−1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL−1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.  相似文献   

4.
Salih B  Denizli A  Kavaklı C  Say R  Pişkin E 《Talanta》1998,46(5):1205-1213
The dithizone-anchored poly (EGDMA-HEMA) microbeads were prepared for the removal of heavy metal ions (i.e. cadmium, mercury, chromium and lead) from aqueous media containing different amounts of these ions (25-500 ppm) and at different pH values (2.0-8.0). The maximum adsorptions of heavy metal ions onto the dithizone-anchored microbeads from their solutions was 18.3, Cd(II); 43.1, Hg(II); 62.2, Cr(III) and 155.2 mg g(-1) for Pb(II). Competition between heavy metal ions (in the case of adsorption from mixture) yielded adsorption capacities of 9.7, Cd(II); 28.7, Hg(II); 17.6, Cr(III) and 38.3 mg g(-1) for Pb(II). The same affinity order was observed under non-competitive and competitive adsorption, i.e. Cr(III)>Pb(II)>Hg(II)>Cd(II). The adsorption of heavy metal ions increased with increasing pH and reached a plateaue value at around pH 5.0. Heavy metal ion adsorption from artificial wastewater was also studied. The adsorption capacities are 4.3, Cd(II); 13.2, Hg(II); 7.2, Cr(III) and 16.4 mg g(-1) for Pb(II). Desorption of heavy metal ions was achieved using 0.1 M HNO(3). The dithizone-anchored microbeads are suitable for repeated use (for more than five cycles) without noticeable loss of capacity.  相似文献   

5.
A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L−1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g−1 for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL−1 for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n = 8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.  相似文献   

6.
Both the accumulation of coal gangue and potentially toxic elements in aqueous solution have caused biological damage to the surrounding ecosystem of the Huainan coal mining field. In this study, coal gangue was used to synthesize calcium silicate hydrate (C-S-H) to remove Cr(VI) and Cu(II)from aqueous solutions and aqueous solution. The optimum parameters for C-S-H synthesis were 700 °C for 1 h and a Ca/Si molar ratio of 1.0. Quantitative sorption analysis was done at variable temperature, C-S-H dosages, solution pH, initial concentrations of metals, and reaction time. The solution pH was precisely controlled by a pH meter. The adsorption temperature was controlled by a thermostatic gas bath oscillator. The error of solution temperature was controlled at ± 0.3, compared with the adsorption temperature. For Cr(VI) and Cu(II), the optimum initial concentration, temperature, and reaction time were 200 mg/L, 40 °C and 90 min, pH 2 and 0.1 g C-S-H for Cr(VI), pH 6 and 0.07 g C-S-H for Cu(II), respectively. The maximum adsorption capacities of Cr(VI) and Cu(II) were 68.03 and 70.42 mg·g−1, respectively. Furthermore, the concentrations of Cu(II) and Cr(VI) in aqueous solution could meet the surface water quality standards in China. The adsorption mechanism of Cu(II) and Cr(VI) onto C-S-H were reduction, electrostatic interaction, chelation interaction, and surface complexation. It was found that C-S-H is an environmentally friendly adsorbent for effective removal of metals from aqueous solution through different mechanisms.  相似文献   

7.
8.
The biosorption characteristics of cations and anions from aqueous solution using polyethylenimine (PEI) modified aerobic granules were investigated. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis exhibit the presence of PEI on the granule surface. Compared with the raw granule, the modified aerobic granules with PEI showed a significant increase in sorption capacity for both metal ions. The monolayer biosorption capacity of granules for Cu(II) and Cr(VI) ions was found to be 71.239 and 348.125mg/g. The optimum solution pH for adsorption of Cu(II) and Cr(VI) from aqueous solutions was found to be 6 and 5.2, respectively. The biosorption data fitted better with the Redlich-Peterson isotherm model. FTIR showed chemical interactions occurred between the metal ions and the amide groups of PEI on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption.  相似文献   

9.
《Analytical letters》2012,45(13-14):2877-2885
Abstract

The adsorption studies of Cr(VI) in presence of Cr(III) on the sulphide of Lead, Zinc and Copper has been studied. It has been found that in case of lead sulphide 100% adsorption of Cr(VI) took place at pH 4.0 and of Cr(III) at pH 7.0. While in case of zinc sulphide the 100% adsorption of Cr(VI) took place at pH 4.5 and of Cr(III) at pH 6.5. In case of copper sulphide 100% adsorption of Cr(VI) took place at pH 5.0 and of Cr(III) at pH 7.0. This difference in adsorption at different pH values forms the basis for the determination of these ions. The method is accurate.  相似文献   

10.
In this study, the imine‐graphene hybrid material (HM) was used as an adsorbent for removal of Fe(III) and Cr(III) metal ions from the drinking waters. The adsorbent material (HM) was prepared at three steps. At the first step, the graphite was oxidized by Hummer's method for preparation of graphene oxide (GO), in the second step, the silanization derivative (GO‐APTES) was obtained from the reaction of the 3‐(trimethoxysilyl) propylamine and GO. In the final step, the hybrid material (HM) was synthesized from the reaction of the 3,5‐diiodosalicylaldehyde and GO‐APTES. The chemical structures of three materials GO, GO‐APTES and HB were characterized by using the FT‐IR, XRD, EDX, SEM, TEM and UV‐vis methods. Thermal properties of the materials GO, GO‐APTES and HB were investigated by TGA/DTA methods in the 25–1000°C temperature range. Adsorption and desorption studies of the hybrid material toward Fe(III) and Cr(III) metal ions were investigated using the Batch method. The effect of pH, contact time, temperature, concentration on the adsorption properties of the hybrid material were investigated by ICP‐OES. The Fe(III) and Cr(III) ions have the maximum adsorption at the pH 7. The adsorption capacity decreases with the increase in pH values because above pH 9 the adsorption decreases due to the precipitation of metal hydroxide.  相似文献   

11.
Luminol-K2S2O8体系中金属离子化学发光行为的研究   总被引:1,自引:0,他引:1  
张新荣  章竹君 《化学学报》1987,45(2):195-197
报导了在自行设计的流动注射式化学发光分析仪上,对Luminal-K2S2O8体系中32种金属离子的化学发光行为的系统研究.确定了对金属离子的最优测定条件以及大多数金属离子的检出极限和线性范围.  相似文献   

12.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

13.
The appearance of chromium in the aqueous effluent is a major concern for the modern industry. In this work, Mesorhizobium amorphae strain CCNWGS0123 was investigated as a biosorbent to remove chromium from aqueous solutions. The optimum pH for Cr(III) and Cr(VI) biosorption were 4 and 2, respectively. This isolate showed an experimental maximum Cr(III) adsorption capacity of 53.52 mg?L?1, while the result was 47.67 mg?L?1 for Cr(VI), with an initial 100 mg?L?1 Cr ions and 1.0 g?L?1 biomass. In terms of time equilibrium, Cr(III) ion was more readily adsorbed than Cr(VI) by this isolate. The biosorption data of both ions fit the Langmuir isotherm better than that of Freundlich model. Meanwhile, this organism exhibited a good capability to release Cr ions, with desorption efficiency of 70 % for Cr(III) and 76 % for Cr(VI). Fourier transform infrared spectroscopy analysis showed that –OH, –COO, –NH, amide I, and C=O were involved in Cr(III) and Cr(VI) binding. The biosorbent was further characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry, which indicated an accumulation of chromium on the cellular level. In the binary mixtures, the removal ratio of total Cr and Cr(III) increased from pH?2 to 4. The highest removal ratio of the total Cr was observed in the 25/25 mg?L?1 mixture at pH?4. In addition, the removal efficiency of Cr(VI) was closely influenced by Cr(III) in the mixture, decreasing to 23.57 mg?g?1 in the 100/100 mg?L?1 mixture system, due to the competition of Cr(III). The potential usage of the chromium-resistant rhizobium for the remediation of chromium-contaminated effluents has been demonstrated based on the above results.  相似文献   

14.
Two different types of modification of activated carbon, by treatment with concentrated solution of HNO3 and outgassing treatment at high temperature, were studied in order to obtain the most effective adsorption of chromium(VI) ions from water solution. The basic parameters affecting the adsorption capacity of Cr(VI) ions on modified activated carbons were studied in details and the effect of modifications of activated carbons has been determined by studying the initial runs of adsorption isotherms. The obtained Cr(VI) adsorption isotherms were well fitted in the Freundlich equation. The reduction of Cr(VI) to Cr(III) and further ion exchange mechanism of adsorption onto oxidizing activated carbon and surface precipitation to Cr(OH)3 in case of outgassing activated carbon were found as the main adsorption mechanisms of Cr(VI) ions onto modified activated carbons. Presence of chlorides and nitrates in studied adsorption system strongly decreased the adsorption ability of Cr(VI) onto outgassing activated carbon and mechanism of this behavior is proposed.  相似文献   

15.
Covalent bonding of polyhexamethyleneguanidine amides of maleic and o-phthalic acids to the aminated silica surface was performed. The complexing properties of the obtained composite adsorbents with respect to Zn(II), Cu(II), Fe(III), Co(II), Pb(II), Ni(II), Mn(II), Mo(VI), and Cr(VI) ions were studied. The Mo(VI) and Cr(VI) reduction was detected on the modified silica surface bearing polyhexamethyleneguanidine amide with o-phthalic acid. The formation of different-ligand complexes with transition metal cations adsorbed on the synthesized composite surface was studied.  相似文献   

16.
A new adsorbent is synthesized on the basis of silica consecutively modified by polyhexamethylene guanidine and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron) for the group preconcentration of Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) followed by determination by inductively coupled plasma atomic emission spectrometry. The adsorbent in the batch mode quantitatively (recovery 98?99%) extracts Fe(III), Al(III) and Cu(II) ions at pH 4.0 and Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) ions at pH 7.0; the time of attainment of an adsorption equilibrium does not exceed 10 min. Consecutive preconcentration at pH 4.0 and 7.0 in the batch and dynamic modes ensures the quantitative separation of Fe(III), Al(III), and Cu(II) from Pb(II), Zn(II), and Mn(II) and their separate determination. The quantitative desorption of metals was attained with 0.5?1.0 M HNO3 (5 or 10 mL). In preconcentration from 200 mL of solution with 5 mL of a desorbing solution, the preconcentration coefficient was equal to 40. The developed procedure was used for the determination of metal ions in river waters of Krasnoyarsk Krai. The results obtained were verified by the added?found method.  相似文献   

17.
The interaction between metal ions and bovine serum albumin (BSA) was studied by using a piezoelectric quartz crystal (PQC) arranged in the electrode-separated configuration. A silanized surface of the PQC was coated with a BSA membrane via a coupling reaction with glutaraldehyde. The frequency shifts obtained from PQC coated with a BSA membrane suggested that various kinds of metal ions could be adsorbed onto the BSA membrane from aqueous solutions containing a low concentration of metal ions (2 or 10 micromol dm(-3)), only when the BSA was denatured with an alkaline solution. Anionic species of Pt(IV) and Au(III) were adsorbed onto the denatured BSA membrane from an acetic acid solution at pH 2.2, and cationic species of Cd(II), Zn(II), Co(II), Ni(II), Cu(II), and Ag(I), and cations, such as Ca2+, Ba2+, and Mg2+, were adsorbed from ammonia buffer at pH 9.5, whereas Al(III), Cr(III), Fe(III), Hg(II), and Pb(II) were hardly adsorbed. The adsorption mechanisms of these metal ions are discussed, based on the electrostatic interaction between the metal ions and the denatured BSA membrane, and complex formation between the metal ions and amino acid residues of the denatured BSA. Further, the PQC coated with a denatured BSA membrane was applied to the determination of Pt and Cd, using large frequency shifts for Pt(IV) and Cd(II).  相似文献   

18.
Two chelating reagents, disodium N,N′-dibenzylethylenebisdithiocarbamate 1 and disodium piperazinebisdithiocarbamate 2, were synthesized and used to preconcentrate trace metals in aqueous samples. For analysis of Cu(II) using a UV-vis spectrometer, Beer's law was obeyed from 5.0 μg L?1 to 6.0 mg L?1 for reagent 1, and from 0.2 mg L?1 to 6.0mg L?1 for reagent. 2. The chelation ratio for reagent 1 to Cu(II) was determined to be 1:1, with a formation constant 1.0 × 109 M?l. The dependence of extraction and extraction efficiency of reagent 1 on pH was also studied with an atomic absorption spectrometer for nine heavy-metal ions-Cu(II), Fe(III), Pb(II), Co(II), Cr(VI), Ni(II), Zn(II), Mn(II) and Cd(II). Except Cr(VI) and Mn(II), the recovery yields of the other seven metal ions were almost quantitative at pH = 4 ? 6. The recovery was 82% for Cr(VI) at pH = 4 ? 5, and 52% for Mn(II) at pH = 6 ? 7.  相似文献   

19.
The present study was undertaken to develop a novel adsorbent for heavy metal ions, and this paper presents the synthesis and characterization of a composite material-silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) with a core-shell structure. SG-PS-azo-SA was used to investigate the adsorption of Mn(II), Co(II), Ni(II), Fe(III), Hg(II), Zn(II), Cd(II), Cr(VI), Pd(II), Cu(II), Ag(I), and Au(III) from aqueous solutions. The results revealed that SG-PS-azo-SA has better adsorption capacity for Cu(II), Ag(I) and Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation with the maximum adsorption capacity for Cu(II), Ag(I), and Au(III) at 1.288 mmol g−1, 1.850 mmol g−1 and 1.613 mmol gt-1, respectively. Thus, silica gel encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) is favorable and useful for the removal of Cu(II), Ag(I) and Au(III) metal ions.  相似文献   

20.
A new solid phase extractant, sinapinaldehyde (SA) modified SBA-15 mesoporous silica, was developed for selective extraction and preconcentration of trace Pb(II) from aqueous solutions. The successful immobilization of SA on SBA-15 and the strong interaction between SA-SBA-15 and Pb(II) were characterized and confirmed by FTIR spectroscopy and scanning electron microscopy. Parameters such as solution pH, shaking time, eluent condition and sample volume were optimized so that the maximum removal of Pb(II) from solution could be achieved. At pH 4.0, the maximum adsorption capacity of the sorbent for Pb(II) was found to be 33.6?mg?g?1 and the adsorbed Pb(II) could be completely eluted using a mixed solution of 2?M HCl and 5% CS(NH2)2. Some common metal ions such as K(I), Na(I), Mg(II), Ca(II), Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) did not interfere with the adsorption of trace Pb(II). The detection limit of the present method was found to be 1.3?ng?mL?1 and the relative standard deviation was less than 2.0% (n?=?8). These results suggested that this new sorbent is very efficient and selective for the removal of trace Pb(II) in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号