首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
Inverse lipid–water phases such as cubic phases can form kinetically stable dispersions by fragmentation in water. Cubic lipid phases can be dispersed by polar lipids favoring lamellar phases or by block copolymers, which can close the bilayer at the surface so that the hydrocarbon chain core is not exposed to water. Monodisperse particles based on glycerol monooleate, with their bilayer curved as the P-, D- or G-minimal surface, have been prepared in this way. Their inner bilayer conformation and outer shape have been examined, mainly by X-ray diffraction and cryo transmission electron microscopy. There is also a different type of cubic lipid bilayer particles with a periodicity in the micrometer range, which have been identified in phospholipid–water dispersions and in cell membrane assemblies. The mechanism behind formation in vivo of such cubic membranes, which also follow the P-, D- and G-surfaces, is discussed. Other lipid–water dispersions with lower symmetry are finally considered; dispersions formed by the inverse hexagonal phase and the dispersed state of a tetragonal bilayer structure formed by lung surfactants.  相似文献   

2.
We synthesize and characterize alkylthiohydroquinones (ATHs) in order to investigate their interactions with lipid model membranes, POPE and POPC. We observe the formation of structures with different morphologies, or curvature of the lipid bilayer, depending on pH and increasing temperature. We attribute their formation to changes in the balance charge/polarity induced by the ATHs. Mixtures of ATHs with POPE at pH 4 form two cubic phases, P4(3)32 and Im3m, that reach a maximum lattice size at 40 °C while under basic conditions these phases only expand upon heating from room temperature. The cubic phases coexist with lamellar or hexagonal phases and are associated with inhomogeneous distribution of the ATH molecules over the lipid matrix. The zwitterionic POPC does not form cubic phases but instead shows lamellar structures with no clear influence of the 2,6-BATH.  相似文献   

3.
This paper describes a diamond cubic phase with large water channels and determines the temperature dependence of the bilayer thickness in the cubic monoolein/octylglucoside/water system based on time-resolved synchrotron X-ray diffraction data. The X-ray diffraction study established a diamond-type lipid cubic phase with large water channels (Dlarge), which has not been previously reported. It is a distinct phase, different from the diamond cubic phase with normal water channels (Dnormal). The larger channels might allow an enhanced entrapment efficiency of biomolecules in lipid cubic phases. The X-ray diffraction patterns recorded during a thermal scan showed a cubic-cubic structural transition from Dlarge to Dnormal. The obtained cubic phases displayed much larger lattice spacings as compared to those of pure monoolein at full hydration.  相似文献   

4.
The accumulated evidence for the existence of periodic minimal surface (PMS) bilayer structure of the bicontinuous cubic phases in lipid–water systems is summarized. There are three fundamental PMS: the G, D, and P types. These three and no others have been observed in lipid–water systems. Due to the so-called Bonnet relation, the PMS structures are isometric conjugates to one another at coexistence, which determines the cubic axis ratio and water content at equilibrium. A number of lipid systems exhibiting coexisting cubic phases have been examined in relation to fulfilling the Bonnet relation. In all cases with known unit cell dimensions, the phases are Bonnet-related. This is regarded as strong evidence for their PMS structure. The phase transitions in relation to swelling and water content also fulfill the Bonnet relations. Aside from bulk phases with PMS structure, it has also been shown possible to produce nanoparticles with internal PMS structure. New developments enable the manufacturing of such particles with uniform size and internal structure, of interest in practical applications such as in vivo delivery of drugs.  相似文献   

5.
Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.  相似文献   

6.
液晶态磷脂酰乙醇胺脂质体和LB膜结构的研究   总被引:10,自引:0,他引:10  
用原子力显微镜、小角X射线散射和31PNMR分别对液晶态磷脂酰乙醇胺脂质体和LB膜结构进行了研究.用原子力显微镜观察到了液晶态脂质体的立方相和双层膜共存的结构图像.研究结果表明,两相共存的状态与双亲性分子的结构、浓度以及介质的组分和pH等因素有关.用小角X射线散射和31PNMR研究发现,在DEPE液晶态中,钠盐诱导形成Q229(Im3m)立方相.DEPE液晶态分别在37.5℃出现Lβ→Lα可逆相变,在63.5℃出现Lα→H可逆相变.  相似文献   

7.
This paper presents the first atomistic simulation of a cubic membrane phase. Using the molecular dynamics simulation technique both the global and the local organization of glycerolmonoolein molecules inside the diamond cubic phase are studied. Multinanosecond simulations reveal that the center of the cubic bilayer remains close to the infinite periodic minimal surface that describes the diamond geometry. We further show that the equilibrium structure of the surfactant molecules inside the cubic phase is very similar to their structure inside a simulated lamellar bilayer. The small differences arise from the packing constraints of the surfactants within the cubic phase which has an area per surfactant that increases toward the bilayer center.  相似文献   

8.
In the current study, molecular dynamics (MD), finite element (FE) method, and genetic algorithm are employed to compute Young’s modulus of free-standing DPPC lipid bilayer. MD method is utilized to simulate loading of a free-standing DPPC lipid bilayer under an indenter. Indentation experiment is also simulated with FE method where genetic algorithm controls value of Young’s modulus in FE simulation and finds the best value for it. The best value means the value results in a force–depth curve which agrees well with the curve obtained from MD simulation. While simulating indentation with MD method two distinct regimes are distinguished in force–depth curve before rupture of the bilayer. The first regime shows elastic response of the bilayer to indentation and it is shown that force–depth curve can be fitted with a cubic polynomial in this regime. The second regime starts at the point which the force–depth curve changes from convex to concave. This point is an inflection point and would be regarded as yield point of the bilayer. Slope of the curve decreases with indentation depth in this regime which shows changes in internal structure of the bilayer. Also we investigate effects of indenter’s shape and indentation speed on computed Young’s modulus and show rate-dependent behavior of free-standing lipid bilayer.  相似文献   

9.
The existence of infinite periodic lipid bilayer structures in biological systems was first demonstrated in cell membrane assemblies. Such periodicity is only possible in symmetric bilayers, and their occurrence is discussed here in relation to the asymmetry of cell membranes in vivo. A periodic membrane conformation in the prolamellar body of plants corresponds to a dormant state without photosynthesis. A similar reversible formation of a dormant state has also been observed in the mitochondria of the amoeba Chaos. In these cases the energy production has become insufficient to maintain the membrane asymmetry. Formation of membranes that are symmetric over the bilayer is proposed to be a principal mechanism behind formation of cubic membrane systems.  相似文献   

10.
The lipidic cubic phase can be characterized as a curved bilayer forming a three-dimensional, crystallographical, well-ordered structure that is interwoven by aqueous channels. It provides a stable, well-organized environment in which diffusion of both water-soluble and lipid-soluble compounds can take place. Cubic phases based on monoacylglycerols form readily and attract our interest due to their ability to incorporate and stabilize proteins. Their lyotropic and thermotropic phase behaviour has been thoroughly investigated. At hydration over 20%, lipidic cubic phases Ia3d and Pn3m are formed. The latter is stable in the presence of excess water, which is important when the cubic phase is considered as an electrode-modifying material. Due to high viscosity, the cubic phases can be simply smeared over solid substrates such as electrodes and used to host enzymes and synthetic catalysts, leading to new types of catalytically active modified electrodes as shown for the determination of cholesterol, CO(2), or oxygen. The efficiency of transport of small hydrophilic molecules within the film can be determined by voltametry using two types of electrodes: a normal-size electrode working in the linear diffusion regime, and an ultramicroelectrode working under spherical diffusion conditions. This allows determining both the concentration and diffusion coefficient of the electrochemically active probe in the cubic phase. The monoolein-based cubic phase matrices are useful for immobilizing enzymes on the electrode surface (e.g., laccases from Trametes sp. and Rhus vernicifera were employed for monitoring dioxygen). The electronic contact between the electrode and the enzyme was maintained using suitable electroactive probes.  相似文献   

11.
The encapsulation and release of peptides, proteins, nucleic acids, and drugs in nanostructured lipid carriers depend on the type of the self-assembled liquid-crystalline organization and the structural dimensions of the aqueous and membraneous compartments, which can be tuned by the multicomponent composition of the systems. In this work, small-angle X-ray scattering (SAXS) investigation is performed on the 'melting' transition of the bicontinuous double diamond cubic phase, formed by pure glycerol monooleate (MO), upon progressive inclusion of varying fractions of pharmaceutical-grade glycerol monooleate (GO) in the hydrated system. The self-assembled MO/GO mixtures are found to form diamond (Pn3m) inverted cubic, inverted hexagonal (H(II)), and sponge (L(3)) phases at ambient temperature in excess of aqueous medium without heat treatment. Mixing of the inverted-cubic-phase-forming MO and the sponge-phase-forming GO components, in equivalent proportions (50/50 w/w), yields an inverted hexagonal (H(II)) phase nanostructured carrier. Scattering models are applied for fitting of the experimental SAXS patterns and identification of the structural changes in the aqueous and lipid bilayer subcompartments. The possibility of transforming, at ambient temperature (20 °C), the bicontinuous cubic nanostructures into inverted hexagonal (H(II)) or sponge (L(3)) mesophases may facilitate novel biomedical applications of the investigated liquid crystalline self-assemblies.  相似文献   

12.
Hydrophobic bioactive guest molecules were solubilized in the discontinuous cubic mesophase (QL) of monoolein. Their effects on the mesophase structure and thermal behavior, and on the formation of soft nanoparticles upon dispersion of the bulk mesophase were studied. Four additives were analyzed. They were classified into two types based on their presumed location within the lipid bilayer and their influence on the phase behavior and structure. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), polarized light microscopy, cryogenic-transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) were used for the analysis. We found that carbamazepine and cholesterol (type I molecules) likely localize in the hydrophobic domains, but close to the hydrophobic-hydrophilic region. They induce strong perturbation to the mesophase packing by influencing both the order of the lipid acyl chains and interactions between lipid headgroups. This results in significant reduction of the phase transition enthalpy, and phase separation into lamellar and cubic mesophases above the maximum loading capacity. The inclusion of type I molecules in the mesophase also prevents the formation of soft nanoparticles with long-range internal order upon dispersion. In their presence, only vesicles or sponge-like nanoparticles form. Phytosterols and coenzyme Q10 (type II molecules) present only moderate effects. These molecules reside in the hydrophobic domains, where they cannot alter the lipid curvature or transform the QL mesophase into another phase. Therefore, above maximum loading, excess solubilizate precipitates in crystal forms. Moreover, when type II-loaded QL is dispersed, nanoparticles with long-range order and cubic symmetry (i.e., cubosomes) do form. A model for the growth of the ordered nanoparticles was developed from a series of intermediate structures identified by cryo-TEM. It proposes the development of the internal structure by fusion events between bilayer segments.  相似文献   

13.
Cubic biomembranes, nonbilayer membranes with connections in three-dimensional space that have a cubic symmetry, have been observed in various cells. Interconversion between the bilayer liquid-crystalline (L(alpha)) phase and cubic phases attracted much attention in terms of both biological and physicochemical aspects. Herein we report the pH effect on the phase and structure of dioleoylphosphatidylserine (DOPS)/monoolein (MO) membranes under a physiological ion concentration condition, which was revealed by small-angle X-ray scattering (SAXS) measurement. At neutral pH, DOPS/MO membranes containing high concentrations of DOPS were in the L(alpha) phase. First, the pH effect on the phase and structure of the multilamellar vesicles (MLVs) of the DOPS/MO membranes preformed at neutral pH was investigated by adding various low-pH buffers into the MLV suspension. For 20%-DOPS/80%-MO MLVs, at and below pH 2.9, a transition from the L(alpha) to cubic (Q(224)) phase occurred within 1 h. This phase transition was reversible; a subsequent increase in pH to a neutral one in the membrane suspension transformed the cubic phase into the original L(alpha) phase. Second, we found that a decrease in pH transformed large unilamellar vesicles of DOPS/MO membranes into the cubic phase under similar conditions. We have proposed the mechanism of the low-pH-induced phase transition and also made a quantitative analysis on the critical pH of the phase transition. This finding is the first demonstration that a change in pH can induce a reversible phase transition between the L(alpha) and cubic phases of lipid membranes within 1 h.  相似文献   

14.
The interaction of hem agglutininneuraminidase (HN) and fusion (F) glycoproteins with swollen vesicles of 1,2-dihexadecyl-sn-glycero-3-phosphatidylcholine (DHPC) was investigated under transition from gel to fluid phase. X-ray studies of the structure of lipid/HN-F mixtures in normal and swollen vesicles have shown that the lamellar bilayer structure predominate in the gel and liquid crystalline phases. A swollen lipid phase, in which the mean repeat distance of lipid bilayers is larger than in the other phases was found. The nature of this phase is similar to the anomalous bilayer swelling reported in literature. The presence of HN and F in the vesicles led to the coexistence of structures with low and high lamellar order, showing larger repeat distance in comparison with the pure lipid. This finding was attributed to the increase in the lipid bilayer thickness due to the HN-F included in the free water layer. The thermal behaviour of the system was not affected by the vesicle swelling. The data showed the existence of gel and liquid crystalline lamellar phases and changes in lipid/HN-F specific heats, mainly due to the concentration effect of the HN-F and its location in the free water layer.  相似文献   

15.
An alternative technique for studying the lateral diffusion in lipid membranes using pulsed field gradients in combination with magic angle spinning is presented. It is shown that MAS probes inserted in a microimaging device that produce high field gradients can be used to monitor also slow diffusion processes. As an example, measurements of the lateral diffusion of lipids embedded in the bilayer of a cubic phase are presented.  相似文献   

16.
Variations in two-dimensional membrane structures on the molecular length scale are considered to have an effect on the mechanisms by which living cell membranes maintain their functionality. We created a molecular model of a patterned bilayer to asses the static and dynamic variations of membrane lateral and transbilayer distribution in two-component lipid bilayers on the molecular level. We study DSPC (distearoylphosphatidylcholine) nanometer domains in a fluid DLPC (dilauroylphosphatidylcholine) background. The system exhibits coexisting fluid and gel phases and is studied on a microsecond time scale. We characterize three different kinds of patterns: symmetric domains, asymmetric domains, and symmetric-asymmetric domains. Preferred bilayer configurations on the nanoscale are those that minimize the hydrophobic mismatch. We find nanoscale patterns to be dynamic structures with mainly lateral and rotational diffusion affecting their stability on the microsecond time scale.  相似文献   

17.
糖和盐类物质对生物膜超分子结构稳定性影响的研究   总被引:1,自引:0,他引:1  
张静  孙润广 《化学学报》2006,64(19):1993-2002
用原子力显微镜(AFM)和小角X射线(SAXS)技术, 研究了NaCl、KCl、胆固醇、葡萄糖和蔗糖等与膜脂的相互作用. 研究发现它们能引起脂质膜超分子体系液晶态结构的变化. 葡萄糖和蔗糖对脂双层膜结构有稳定作用. 在NaCl溶液中制成的脂质膜, 随着NaCl浓度的增加, 它们的双层膜更稳定. 在KCl溶液中结果恰好相反. AFM研究发现液晶态脂双层膜结构与双亲性分子的结构、浓度以及介质的组分和pH等因素有关. 在1,2-反十八碳-3-磷脂酰乙醇胺(DEPE)液晶态中, 钠盐诱导形成Q229(Im3m)立方相. 油酸的含量对DEPE-PVP(聚乙烯吡咯烷酮)超分子结构也有一定的影响, 当油酸含量达到某一临界值时, 则发生从Im3m(Q229)到Pn3m(Q224)的转变. 胆固醇能促使形成Pn3m(Q224)和六角相HII共存相. 研究结果表明, 生物膜超分子聚集体的氢键、分子van der Waals力、离子的静电力等这些弱相互作用的协同性、方向性和选择性, 可能决定着生物膜的结构和功能.  相似文献   

18.
The interaction of cytochrome c (cyt c) with supported lipid membranes was investigated on the nanoscale by real-time atomic force microscopy. Cyt c promoted the formation and the expansion of depressed areas in the fluid parts of the bilayer. When the depressions reached the gel domains, they induced the thickening of their edges. According to the step-height differences, cyt c was able to remove neutral lipids in the fluid phase and then to reside on the mica surface. Concerning gel phases, cyt c might insert between the two lipid leaflets, or it might intercalate between the mica and the bilayer.  相似文献   

19.
Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ? micellar and cubic ? lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion. Both lipid compositions show completely reversible temperature-induced phase transitions, reflecting the thermodynamic equilibrium structures of their mesophases. Probing both regions of the different lipid phases reveals a large degree of heterogeneity and flexibility of the lipid self-assembly. These properties are crucial for carrying out different biological functions such as the ability to accommodate various molecular sizes.  相似文献   

20.
The interaction of submicellar concentrations of various physiologically important unconjugated [sodium deoxycholate (NaDC), sodium cholate (NaC)] and conjugated [sodium glycodeoxycholate (NaGDC), sodium glycocholate (NaGC), sodium taurodeoxycholate (NaTDC), sodium taurocholate (NaTC)] bile salts with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles in solid gel (SG) and liquid crystalline (LC) phases was investigated using the excited-state prototropism of 1-naphthol. Steady-state and time-resolved fluorescence of the two excited-state prototropic forms of 1-naphthol indicate that submicellar bile salt concentration induces hydration of the lipid bilayer membrane into the core region. This hydration effect is a general phenomenon of the bile salts studied. The bilayer hydration efficiency of the bile salt follows the order NaDC > NaC > NaGDC > NaTDC > NaGC > NaTC for both DPPC and DMPC vesicles in their SG and LC phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号