首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe viscous fingering during water flooding of heavy oil leaves a large amount of oil untouched in the reservoir. Improving sweep efficiency is vital for increasing heavy oil recovery. Previous researches have proved that foam flooding can increase the sweep efficiency and oil recovery. The polymers could make the foam more stable and have better plugging capacity, but the interfacial tension (IFT) of oil and water increase which could decrease the displacement efficiency of the heavy oil. In view of the deficiency of conventional foam flooding, it is necessary to research the ultra-low interfacial tension foam which could improve macro-swept volume and micro-displacement efficiency in heavy oil reservoir. In this paper a novel foam agent is developed by the combination of surfactant and additives to lower the IFT of oil and water. The operating parameters including foam injections modes and gas liquid ratio were investigated by core flooding experiments. Field test performance shows that oil production per day increased from 85.6 to 125.7 t, water cut declined from 92.1 to 83.6% after 3 months injection. This study provides a novel method to improve heavy oil recovery with an ultra-low interfacial tension foam flooding system.  相似文献   

2.
Transition from oil-in-water (O/W) emulsions to water-in-oil (W/O) emulsions and its action on enhanced oil recovery was investigated by viscosity, morphology, and simulated flooding experiments. This transition can be realized by increasing the volume ratio of oil to water or decreasing the emulsifier concentration. At a mass concentration of 0.3 wt%, the self-developed emulsifier FJ-1 mainly forms O/W emulsions at a volume ratio (oil to water) of 1:1. The emulsions behave as O/W emulsions with a low viscosity when the volume ratio of oil to water is below 2:1. Above 2:1, increasing volume ratio leads to the O/W emulsions transferring into W/O emulsions with high viscosity. For example, at a volume fraction of 4:1, the viscosity of W/O emulsions reaches 229.1 mPa · s, and separated water can hardly be detected. Transition from O/W emulsions to W/O emulsions with high viscosity can also be realized by decreasing the concentration of emulsifier to 0.05 wt% or lower at a volume ratio of 1:1. These may be the critical factors leading to transition from O/W emulsions to W/O emulsions at core conditions. Simulated flooding experiments show that emulsifier fluids can act as an in situ mobility improver and make an improvement of oil recovery even by 20.4%. The results indicate that the water-in-crude-oil emulsions possess great potential in enhancing oil recovery.  相似文献   

3.
Severe viscous fingering during water flooding of heavy oil leaves a large amount of oil untouched in the reservoir. Improving sweep efficiency is vital for enhancing heavy oil recovery. This study presented a laboratory study for improving sweep efficiency by alkaline flooding in heavy oil Reservoirs. This included glass-etched micromodel flooding tests, one-dimensional flooding experiments and three-dimensional physical model study. The micromodel tests show that W/O droplet flow plays a prominent role in the alkaline flooding to improve sweep efficiency. There is a minimum alkaline concentration that generates the W/O droplet flow, and the W/O droplet flow is more obvious with the alkaline concentration increasing. A series of flood tests were conducted using 325 mPa · s, 2000 mPa · s, and 3950 mPa · s heavy oils to assess the effectiveness of W/O droplet flow in alkaline flooding for enhanced heavy oil recovery. The flood tests results demonstrate the considerable potential for improved heavy oil recovery by alkaline flooding, and moreover, the incremental oil recovery has been found to increase as the alkaline concentration increases. The result obtained in three-dimensional physical model study indicates that the sweep area can be greatly improved by the formation of W/O droplet flow in alkaline flooding.  相似文献   

4.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

5.
Several new foaming agent formulations (surfactants and polymers) in the presence of multi-walled carbon nanotube (MWCNT) were developed in 3% salinity (NaCl, 2.4?wt%, CaCl2, 0.6?wt%). The dispersion stability of the MWCNT and the viscosity of the solutions were examined as a prerequisite for reservoir applications. Foam was generated in situ and one-dimensional flow-through tests were performed by co-injecting air and foaming solution either in the presence of MWCNT or at particle-free condition. The pressure drop (Δp) across the sand-pack and the nanoparticles breakthrough were closely monitored. The fluid injection rate, gas fraction, and the effect of MWCNT on foams in porous media were investigated.

Our results reveal that foams stabilized by the selected nanoparticles are capable of generating stronger foams leading to higher apparent Δp. The Δp profile varies with gas fraction, which largely affects the foam texture and quality. Also, the viscosity of foaming agent solutions influences Δp values. Adding MWCNT to the foaming agent solutions appears beneficial to the flooding as surfactants adsorption onto nanoparticle surfaces, which facilitates surfactants partitioning to the G/L interface.

Addition of nanoparticles in the developed foam formulations leads to the formation of high-quality stronger foams in porous media, which could potentially improve the sweep efficiency and increase the oil recovery.  相似文献   

6.
To investigate the mechanisms of enhancing oil recovery and the flow behaviors of foamed gel in porous media, foamed gels with characteristics of excellent strength and viscosity were prepared with polymer, crosslinking agent, foam agent, and formation water. The breakthrough-vacuum method and a rotary viscometer were used to evaluate the strength and viscosity of foamed gel. Coreflooding and pore-level visualization experiments were performed in heterogeneous reservoir models. Laboratory results illustrate that high strength and viscosity of foamed gel can be prepared by 0.15% NJ-8, 0.2% polyacrylamide solution, and 1.5% foaming agent. The strength and viscosity of the foamed gel reached 0.06 MPa and 10,000 MPa · s, respectively. The results of coreflooding experiments in heterogeneous cores show that oil recovery can be improved by approximately 36.9% after injecting 0.3 pore volume of the foamed gel, and enhanced oil recovery is mainly attributed to the improving sweep efficiency of mid- to low-permeability layers. Images of visualization flooding demonstrate that foamed gel exhibits good oil resistance and elasticity when used with crude oil. Furthermore, the new amoeba effect, Jamin effect, fluid-diverting effect, and extruding effect between foamed gel and oil in porous media can enhance oil recovery by improving sweep efficiency.  相似文献   

7.
Three different types of foaming agents including hydrocarbon surfactant TQ01, partial fluorinated surfactant BF01, and per-fluorinated surfactant QF01 exhibited good foaming ability and foam stability under 95°C high temperature and 32,325 ppm salinity conditions. The oil-tolerance ability order with respect to Malaysia Off-shore (MOS) crude oil for surfactant TQ01, BF01, and QF01 is TQ01 < BF01 < QF01. Introduction of polymer into the foam formula could significantly increase foam stability. Different polymers show different abilities of increasing foam stability. Spreading coefficient and entering coefficient are close to zero for surfactant BF01 foaming system and much less than zero for surfactant QF01 foaming system, so the oil-resistance ability of foam generated by surfactant QF01 is the strongest. For surfactant TQ01 foaming system, the calculated spreading coefficient and entering coefficient are greater than zero; therefore, the TQ01 foam system is more sensitive to MOS crude oil and its oil-resistance ability is the poorest. Core flooding test indicated that using the 0.4% BF01 and 0.2% YH1096 combined foaming formula could increase the pressure drop across the porous media significantly, indicating that strong foam was generated in the presence of MOS crude oil.  相似文献   

8.
More than 50% of oil is trapped in petroleum reservoirs after applying primary and secondary recovery methods for removal. Thus, to produce more crude oils from these reservoirs, different enhanced oil recovery (EOR) approaches should be performed. In this research, the effect of hydrophilic nanoparticles of SiO2 at 12 nm size, in (EOR) from carbonate reservoir is systematically investigated. Using this nanoparticle, we can increase viscosity of the injection fluid and then lower the mobility ratio between oil and nanofluid in carbonate reservoirs. To this end, a core flooding apparatus was used to determine the effectiveness and robustness of nanosilica for EOR from carbonate reservoirs. These experiments are applied on the reservoir carbonate core samples, which are saturated with brine and oil that was injected with nanoparticles of SiO2 at various concentrations. The output results depict that, with increasing nanoparticle concentration, the viscosity of the injection fluid increases and results in decreased mobility ratio between oil and nanofluid. The results confirm that using the nanoparticle increases the recovery. Also, increasing the nanoparticle concentration up to 0.6% increases the ultimate recovery (%OOIP), but a further increase to 1.0 does not have a significant effect.  相似文献   

9.
Herein thermally treated empty fruit bunch SiO2 nanoparticles (EFBSNP) was produced by ultrasound-assisted wet-milling and their effectiveness in enhancing cavitation effect of ultrasound to improve heavy oil recovery was evaluated. Empty fruit bunch ash (EFBA) was thermally treated to enhance its SiO2 content. Surface properties and size distribution of EFBSNP were studied using transmission electron microscopy and dynamic light scattering. X-ray diffractometer identified the crystal phase, the active group was ascertain using Fourier-transform infrared spectroscopy and thermal stability was established by differential scanning calorimetry. Moreover, the surface chemical composition was determined by X-ray photoelectron spectroscopy. The ability of empty fruit bunch SiO2 nanofluid (EFBSNF) to absorb ultrasound in heavy oil and the impact of ultrasound assisted EFBSNF flooding to enhance oil recovery of heavy oil was assessed. The microstructure analysis revealed EFBSNP of size ranges 17.78–115.38 nm with a purity of 94%. EFBSNF assisted ultrasound decreased interfacial tension to 0.2 mN/m, thus mobilizing the trapped oil droplet in the pores effectively. Ultrasound assisted EFBSNF flooding increased oil recovery by 44.33% compared to 26.33% without ultrasound.  相似文献   

10.
Experimental studies are conducted in order to elucidate the mechanisms of monoethanolamide responsible for synergism on lowering interfacial tension and decreasing loss due to adsorption on surface of reservoir sand and precipitation with multivalent cations in model oil/water/surfactants/brine systems. The interfacial tensions between solutions containing crude oil and monoethanolamide, petroleum sulfonates, or mixture of monoethanolamide and petroleum sulfonates at different ratios are studied without any alkali added in the solution. The results show significant synergic effect between monoethanolamide and petroleum sulfonates can reduce the interfacial tension to ultralow. Adsorption isotherms of monoethanolamide, petroleum sulfonates and mixture solution are determined to assess the effect of monoethanolamide on reducing the loss of petroleum sulfonates in formation. Static adsorption experiments indicate that the loss of petroleum sulfonates for adsorption and precipitation can be reduced on a great degree when monoethanolamide is mixed with petroleum sulfonates. The core-flooding tests show that the enhanced oil recovery with the formulation of surfactants of 0.3 wt% petroleum sulfonates and 0.2 wt% monoethanolamide can be increased by 26.6% without any alkali added in the flooding solution.  相似文献   

11.
In this work, the onset of asphaltene flocculation for an Iranian crude oil by titration of samples with heptane in the presence and absence of the TiO2/SiO2 nanofluids was obtained by Near-IR spectroscopy. Nanoparticles and nanocomposites were characterized by BET, FESEM, EDX, XRD, and XRF analysis. Modeling and optimization of inhibition of asphaltene flocculation process by TiO2/SiO2 nanofluids were conducted by response surface methodology (RSM). Under optimum conditions (nanocomposite composition = 0.04 wt% (80%TiO2:20%SiO2), salinity = 4.01 wt%, and pH = 3.42), the onset point increased. For nanofluids stability analysis, the optimum nanofluid was compared with the two other nanofluids (SiO2 and TiO2) by visual observation method. The results indicated that high stability and surface area of the 80%TiO2 nanocomposites increase asphaltene adsorption on the particles surface that subsequently increases the onset point. In addition, the optimum nanofluid performance on the carbonate rocks was evaluated by contact angle and core flooding experiments. The 80% TiO2 nanofluid changed the wettability of carbonate rocks from strongly oil-wet to strongly water-wet condition and also decreased the residual oil saturation and enhanced the oil recovery with an increase in the recovery factor of about 15%.  相似文献   

12.
Zeolite-β and mordenite were impregnated with 0.1 wt% Pd and varying the amount (0.1–0.5 wt%) of Ni. The prepared nanoporous catalyst were characterized by various physico-chemical techniques such as XRD, nitrogen adsorption–desorption isotherm (BET), NH3-TPD and TPR, XPS and TEM. Hydroisomerisation of n-octane was carried out in the temperature range from 200 to 450 °C in the presence of flowing H2 gas under 1 atm. Finally we found that Ni addition up to 0.3 and 0.2 wt% over 0.1 wt% Pd/H-β and H-mordenite enhances the n-octane conversion and isomerisation selectivity. As the Ni amount exceeds the threshold values, the conversion decreases with increase in cracked products, and also, the selectivity of mono and dibranched isomers were improved suggestion operation of PCP intermediate mechanism. The bimetallic catalysts were more selective to the formation of dibranched isomers with higher octane number, when compared with monometallic catalysts. Ni-Pd loaded zeolite-β supports always show higher activity and selectivity than mordenite supports. Moreover, we achieved higher conversion (74.9 %) and isomerisation selectivity (92.5 %) at low Ni loading (0.3 Ni wt% over 0.1 Pd wt%/Hβ) for the first time.  相似文献   

13.
Wettablity alteration of rock surface is an important mechanism for surfactant-based enhanced oil recovery (EOR) processes. Two salt and temperature-tolerant surfactant formulations were developed based on the conditions of high temperature (97–120°C) and high salinity (20 × 104 mg/L) reservoirs where a surfactant-based EOR process is attempted. Both the two sufactant formulations can achieve ultralow interfacial tension level (≤10?3 mN/m) with crude oil after aging for 125 days at reservoir conditions. Wettability alteration of core slices induced by the two surfactant formulations was evalutated by measuring contact angles. Core flooding experiments were carried out to study the influence of initial rock wettabilities on oil recovery in the crude oil/surfactant/formation water/rock system. The results indicated that the two formulations could turn oil-wet core slices into water-wet at 90–120°C and 20 × 104 mg/L salinity, while the water-wet core slices retained their hydrophilic nature. The core flooding experiments showed that the water-wet cores could yield higher oil recovery compared with the oil-wet cores in water flooding, surfactant, and subsequent water flooding process. The two surfactant formulations could successfully yield additional oil recovery in both oil-wet and water-wet cores.  相似文献   

14.
CO2 flooding is a win-win technology, sequestrating greenhouse CO2 while producing a significant amount of crude oil to help defray the cost of CO2 sequestrating and enhancing oil recovery. However, due to the difference of sedimentary environment and poor properties of formations, physical properties of the crude oil and the effect of CO2 flooding are not always satisfactory in most oilfields of China. Therefore, in this article, to improve the understanding of the oil recovery mechanisms and feasibility of CO2 flooding in China, based on the oil and gas of Mao-3 oilfields, phase behavior of the CO2 and crude oil system was investigated. Parameters like saturated pressure, volume factor, gas oil ratio, and viscosity were measured and their relationships analyzed. Results show that crude oil of Mao-3 reservoir and CO2 has good mutual dissolution under reservoir conditions, and CO2 could expand the oil and reduce the oil viscosity greatly. As a result, formation energy could be enhanced and flow characteristics of the oil could be improved by CO2 flooding.  相似文献   

15.
The effect on β‐lactoglobulin foamability and foam stability of the poly(ethylene oxide)‐poly(propylene oxide) block copolymers F127 (PEO99‐PPO65‐PEO99), molecular weight 12500 g/mol, and P85 (PEO26‐PPO39‐PEO26), molecular weight 4600 g/mol, has been investigated at constant protein concentration, 10 µM (0.2 mg/L), and varying block copolymer concentrations, ranging from 0.02 to 1600 µM. Foam was generated by means of air sparging and the foam volume and liquid volume of the foam were measured for one hour. It was found that foam stabilized by F127 or P85 in the concentration range 20–1600 µM contained a larger liquid volume initially than pure β‐lactoglobulin foam. Furthermore, β‐lactoglobulin foamability was only marginally affected by the presence of F127, while it was reduced in an interval of low P85 concentrations. The protein foam stability was retained in the presence of the larger polymer F127, whereas P85 largely reduced the stability, indicating that the size of the polymeric surfactant is important. The results are discussed in relation to surface rheological properties and forces acting across foam films. Steric repulsion generated between the surfaces of foam films is suggested to be the main stabilizing factor in dry foam containing F127. The instability of the mixed β‐lactoglobulin/P85 system is suggested to be caused by two effects. First, there are incompatible stabilization mechanisms of block copolymer and protein, as supported by previous surface rheological data. Second, there is a reduced importance of long‐range steric repulsion when P85 is added, compared to the case where F127 and β‐lactoglobulin are mixed.  相似文献   

16.
Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g?1, respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a biosurfactant of choice for actual MEOR applications.  相似文献   

17.
The important role of nanoparticles (NPs) on foam stabilization under harsh geological conditions has been well recognized. In this paper, the Orthogonal Experimental Design (OED) method is adopted to investigate the synergy effects of six parameters, including NP concentration, surfactant concentration, oil concentration, salinity, temperature, and pressure, under five levels in the range of 0–0.2 wt%, 0.1–0.5 wt%, 0–4 wt%, 0–8 wt%, 20–60 °C, and 5.5–9.5 MPa respectively. K values and B values obtained in the OED experiments are employed to show the single parameter effect and the importance of each influential factor on foam static properties. It is concluded that system temperature and pressure, which has the highest B values of 22 mm and 18 mm on foam height results, are the dominant parameters on foamability, whereas temperature with B values of 80% on foam decay rate is the dominant factor on foam stability. It is observed when the system condition is close to the CO2 critical point, the foamability and stability of the NP-stabilized foam are much worse than under conditions far from the critical point. At last, optimal formulation of surfactant and NP concentration is proposed and validated for two geological cases of 45 °C and 55 °C with salinity and oil presence. It is expected the experimental technique, as well as the research results, reported in this paper could help the laboratory screening and formulation optimization of the complex NP-stabilized ScCO2 foam system.  相似文献   

18.
The oily sludge would cause environment pollution, and would cause the heavy oil waste. Therefore, it was vital for us to find novel methods to obtain heavy oil from the oily sludges. In this study, the [C12mim][PF6] and [C12mim][Br] ionic liquids(ILs) were used to enhance the oil recovery. The toluene could obtain the highest oil recovery, and both the two ILs could increase the oil recovery. Toluene could obtain the highest oil recovery (89.4 wt%), and n-octane could obtain the lowest oil recovery (76.8 wt%). [C12mim] [PF6] could efficiently increase the heavy oil recovery to 91.2 wt%(by toluene). The [C12mim][Br] could increase the heavy oil recovery further. Both the [C12mim] [PF6] and the [C12mim][Br] ionic liquids could increase the heavy ois C/H ratio, decrease heavy oil viscosity and increase the sands hydrophilicity. The [C12mim][Br] ionic liquids showed better effect. In addition, the ionic liquids could increase the solvents recovery, and the ionic liquids recovery were high. Therefore, the ionic liquids enhanced oil recovery could be recycled to ten times. The two ionic liquids could effectively decrease the heavy oil interaction force, and when the ionic liquids increased to 200 ppm, the force remained stable. In the end, the ionic liquids enhancing solvent extraction mechanism was put forward.  相似文献   

19.
Nonylphenol-substituted dodecyl sulfonate (C12-NPAS) was synthesized via sulfonation-alkylation-neutralization using 1-dodecene, SO3, and nonylphenol as raw materials. The properties such as surface tension, interfacial tension (IFT), wettability, foam properties, and salinity tolerance of C12-NPAS were systematically investigated. The results show that the critical micelle concentration (CMC) of C12-NPAS was 0.22?mmol?·?L?1 and the surface tension at the CMC (γCMC) of C12-NPAS was 29.4 mN/m. When compared with the traditional surfactants sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), and linear alkylbenzene sulfonate (LAS), the surface properties of C12-NPAS were found to be superior. The IFT between Daqing crude oil and a weak-base alkaline/surfactant/polymer (ASP) oil flooding system containing 0.1?wt% of C12-NPAS can reach an ultralow level of 2.79?×?10?3 mN/m, which was lower than that found for the traditional surfactant heavy alkylbenzene sulfonate (HABS). The salinity and hardness tolerance of C12-NPAS were much stronger than those found for conventional surfactants, petroleum sulfonate, and LAS. C12-NPAS also shows improved wetting performance, foamability, and foam stability.  相似文献   

20.
以往的研究理论和矿场实验已经证明,蒸汽泡沫驱是一种有效防止汽窜、提高稠油采收率的方式。本文分析了蒸汽泡沫驱目前所存在的问题,提出了解决办法;回顾了耐温耐盐发泡剂的研究历程,给出了发泡剂的一些合成方法,总结了前人制备高温耐盐发泡剂、复配泡沫体系的研究成果,指出了现有发泡剂的不足;探讨了泡沫产生、流动和稳定机理,从微观方面进一步探寻稳定泡沫的原理;初步介绍了纳米颗粒提高泡沫稳定性的原因,结合泡沫产生和流动的微观机理,分析了纳米颗粒提高蒸汽泡沫驱油效率的实质。最后,展望了蒸汽泡沫驱未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号