首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, chitosan-decorated multiple nanoemulsion (MNE) was formulated using a two-step emulsification process. The formulated multiple nanoemuslion was evaluated physiochemically for its size and zeta potential, surface morphology, creaming and cracking, viscosity and pH. A Franz diffusion cell apparatus was used to carry out in vitro drug-release and permeation studies. The formulated nanoemulsion showed uniform droplet size and zeta potential. The pH and viscosity of the formulated emulsion were in the range of and suitable for topical delivery. The drug contents of the simple nanoemulsion (SNE), the chitosan-decorated nanoemulsion (CNE) and the MNE were 71 ± 2%, 82 ± 2% and 90 ± 2%, respectively. The formulated MNE showed controlled release of itraconazole as compared with that of the SNE and CNE. This was attributed to the chitosan decoration as well as to formulating multiple emulsions. The significant permeation and skin drug retention profile of the MNE were attributed to using the surfactants tween 80 and span 20 and the co-surfactant PEG 400. ATR-FTIR analysis confirmed that the MNE mainly affects the lipids and proteins of the skin, particularly the stratum corneum, which results in significantly higher permeation and retention of the drug. It was concluded that the proposed MNE formulation delivers drug to the target site of the skin and can be therapeutically used for various cutaneous fungal infections.  相似文献   

2.
This study focused on developing Panos nanoemulsion (P-NE) and enhancing the anti-inflammatory efficacy for the treatment of inflammation. The effects of P-NE were evaluated in terms of Nitric oxide (NO production) in Lipopolysaccharide (LPS), induced RAW 264.7 cells, Reactive oxygen species (ROS) generation using Human Keratinocyte cells (HaCaT), and quantitative polymerase chain reaction (qPCR) analysis. Sea buckthorn oil, Tween 80, and span 80 were used and optimize the process. Panos extract (P-Ext) was prepared using the fermentation process. Further high-energy ultra-sonication was used for the preparation of P-NE. The developed nanoemulsion (NE) was characterized using different analytical methods. Field emission transmission electron microscopy (FE-TEM) analyzed the spherical shape and morphology. In addition, stability was analyzed by Dynamic light scattering (DLS) analysis, where particle size was analyzed 83 nm, and Zeta potential −28.20 ± 2 (mV). Furthermore, 90 days of stability was tested using different temperatures conditions where excellent stability was observed. P-NE are non-toxic in (HaCaT), and RAW264.7 cells up to 100 µg/mL further showed effects on ROS and NO production of the cells at 50 µg/mL. The qPCR analysis demonstrated the suppression of pro-inflammatory mediators for (Cox 2, IL-6, IL-1β, and TNF-α, NF-κB, Ikkα, and iNOS) gene expression. The prepared NE exhibited anti-inflammatory effects, demonstrating its potential as a safe and non-toxic nanomedicine.  相似文献   

3.
Miconazole nitrate-loaded microemulsion based on Tween 80 and propylene glycol, castor oil and water with and without Poloxamer 407 was prepared and characterized with respect to drug content, stability, antifungal, and physicochemical properties and ex vivo drug release using a modified Franz diffusion apparatus. Results obtained revealed homogeneous and stable microemulsions with excellent physicochemical properties, permeation coefficients and fluxes, and increased in vitro antifungal activity (~1.2 times) against clinically isolated Candida albicans when compared to a commercial topical miconazole (Fungusol) solution. Poloxamer-stabilized microemulsion could offer a better and more reliable approach of delivering miconazole than both the unstabilized and Fungusol formulations.   相似文献   

4.
The nano-drug delivery system has gained greater acceptability for poorly soluble drugs. Alogliptin (ALG) is a FDA-approved oral anti-hyperglycemic drug that inhibits dipeptidyl peptidase-4. The present study is designed to prepare polymeric ALG nanoparticles (NPs) for the management of diabetes. ALG-NPs were prepared using the nanoprecipitation method and further optimized by Box–Behnken experimental design (BBD). The formulation was optimized by varying the independent variables Eudragit RSPO (A), Tween 20 (B), and sonication time (C), and the effects on the hydrodynamic diameter (Y1) and entrapment efficiency (Y2) were evaluated. The optimized ALG-NPs were further evaluated for in vitro release, intestinal permeation, and pharmacokinetic and anti-diabetic activity. The prepared ALG-NPs show a hydrodynamic diameter of between 272.34 nm and 482.87 nm, and an entrapment efficiency of between 64.43 and 95.21%. The in vitro release data of ALG-NPs reveals a prolonged release pattern (84.52 ± 4.1%) in 24 h. The permeation study results show a 2.35-fold higher permeation flux than pure ALG. ALG-NPs exhibit a significantly (p < 0.05) higher pharmacokinetic profile than pure ALG. They also significantly (p < 0.05) reduce the blood sugar levels as compared to pure ALG. The findings of the study support the application of ALG-entrapped Eudragit RSPO nanoparticles as an alternative carrier for the improvement of therapeutic activity.  相似文献   

5.
The objective of this study was to develop proliposomal formulations for a poorly bioavailable drug, aliskiren hemifumarate (AKH). A solvent evaporation method was used to prepare proliposomes using different lipids. The lipids of selection were soy phosphatidylcholine (SPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoylphosphatidylglycerol sodium (DMPG Na), stearylamine, and cholesterol in various ratios. Proliposomes were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics upon hydration with aqueous phase. In vitro drug release studies were conducted in 0.01 N hydrochloric acid using USP type II dissolution apparatus. Parallel artificial membrane permeation assay (PAMPA) and Caco-2 cell line models were used to study the in vitro drug permeation. Male Sprague-Dawley (SD) rats were used to conduct in vivo pharmacokinetic studies. Among different formulations, proliposomes with drug/DMPC/cholesterol/stearylamine in the ratio of 1:5:0.025:0.050 (w/w/w/w) demonstrated the desired particle size, higher zeta potential, and higher encapsulation efficiency. The PAMPA and Caco-2 cell line experiments showed a significantly higher permeability of AKH with proliposomes as compared to pure AKH. In animal studies, the optimized formulation of proliposomes showed significant improvement in the rate and extent of absorption of AKH. Specifically, following a single oral administration, the relative bioavailability of AKH proliposome formulation was 230% when compared to pure AKH suspension.  相似文献   

6.
Ischemic stroke is a difficult-to-treat brain disease that may be attributed to a limited therapeutic time window and lack of effective clinical drugs. Nasal–brain administration is characterized by low systemic toxicity and is a direct and non-invasive brain targeting route. Preliminary studies have shown that the volatile oil of Chaxiong (VOC) has an obvious anti-ischemic stroke effect. In this work, we designed a nanoemulsion thermosensitive in situ gel (VOC-NE-ISG) loaded with volatile oil of Chaxiong for ischemia via intranasal delivery to rat brain treatment of cerebral ischemic stroke. The developed VOC-NE-ISG formulation has a suitable particle size of 21.02 ± 0.25 nm and a zeta potential of −20.4 ± 1.47 mV, with good gelling ability and prolonged release of the five components of VOC. The results of in vivo pharmacokinetic studies and brain targeting studies showed that intranasal administration of VOC-NE-ISG could significantly improve the bioavailability and had excellent brain-targeting efficacy of nasal-to-brain delivery. In addition, the results of pharmacodynamics experiments showed that both VOC-NE and VOC-NE-ISG could reduce the neurological deficit score of model rats, reducing the size of cerebral infarction, with a significant effect on improving ischemic stroke. Overall, VOC-NE-ISG may be a promising intranasal nanomedicine for the effective treatment of ischemic stroke.  相似文献   

7.
Isopropyl Isothiocyanate (IPI) is a poorly water-soluble drug used in different biological activities. So, the present work was designed to prepare and evaluate IPI loaded vesicles and evaluated for vesicle size, polydispersity index (PDI) and zeta potential, encapsulation efficiency, drug release, and drug permeation. The selected formulation was coated with chitosan and further assessed for the anti-platelet and anti-thrombotic activity. The prepared IPI vesicles (F3) exhibited a vesicle size of 298 nm ± 5.1, the zeta potential of −18.7 mV, encapsulation efficiency of 86.2 ± 5.3% and PDI of 0.33. The chitosan-coated IPI vesicles (F3C) exhibited an increased size of 379 ± 4.5 nm, a positive zeta potential of 23.5 ± 2.8 mV and encapsulation efficiency of 77.3 ± 4.1%. IPI chitosan vesicle (F3C) showed enhanced mucoadhesive property (2.7 folds) and intestinal permeation (~1.8-fold) higher than IPI vesicles (F3). There was a significant (p < 0.05) enhancement in size, muco-adhesion, and permeation flux achieved after coating with chitosan. The IPI chitosan vesicle (F3C) demonstrated an enhanced bleeding time of 525.33 ± 12.43 s, anti-thrombin activity of 59.72 ± 4.21, and inhibition of platelet aggregation 68.64 ± 3.99%, and anti-platelet activity of 99.47%. The results of the study suggest that IPI chitosan vesicles showed promising in vitro results, as well as improved anti-platelet and anti-thrombotic activity compared to pure IPI and IPI vesicles.  相似文献   

8.
Irbesartan (IR) is an angiotensin II receptor antagonist drug with antihypertensive activity. IR bioavailability is limited due to poor solubility and first-pass metabolism. The current investigation aimed to design, develop, and characterize the cyclodextrin(s) (CD) complexed IR (IR-CD) loaded solid lipid nanoparticles (IR-CD-SLNs) for enhanced solubility, sustained release behavior, and subsequently improved bioavailability through oral administration. Based on phase solubility studies, solid complexes were prepared by the coacervation followed by lyophilization method and characterized for drug content, inclusion efficiency, solubility, and in vitro dissolution. IR-CD inclusion complexes demonstrated enhancement of solubility and dissolution rate of IR. However, the dissolution efficiency was significantly increased with hydroxypropyl-βCD (HP-βCD) inclusion complex than beta-CD (βCD). SLNs were obtained by hot homogenization coupled with the ultrasonication method with IR/HP-βCD inclusion complex loaded into Dynasan 112 and glycerol monostearate (GMS). SLNs were evaluated for physicochemical characteristics, in vitro release, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and physical stability at room temperature for two months. The optimized SLNs formulation showed particle size, polydispersity index, zeta potential, assay, and entrapment efficiency of 257.6 ± 5.1 nm, 0.21 ± 0.03, −30.5 ± 4.1 mV, 99.8 ± 2.5, and 93.7 ± 2.5%, respectively. IR-CD-SLN and IR-SLN dispersions showed sustained release of IR compared to the IR-CD inclusion complexes. DSC results complimented PXRD results by the absence of IR endothermic peak. Optimized IR-CD complex, IR-SLN, and IR-CD-SLN formulations were stable for two months at room temperature. Thus, the current IR oral formulation may exhibit improved oral bioavailability and prolonged antihypertensive activity, which may improve therapeutic outcomes in the treatment of hypertension and heart failure.  相似文献   

9.
The present research work is designed to prepare and evaluate piperine liposomes and piperine–chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (−7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.  相似文献   

10.
Platinum-based catalysts with Cl, OH, O2− and H2O ligands, are involved in many industrial processes. Their final chemical properties are impacted by calcination and reduction applied during the preparation and activation steps. We investigate their stability under these reactive conditions with density functional theory (DFT). We benchmark various functionals (PBE-dDsC, optPBE, B3LYP, HSE06, PBE0, TPSS, RTPSS and SCAN) against ACFDT-RPA. PBE-dDsC is well adapted, although hybrid functionals are more accurate for redox reactions. Thermodynamic phase diagrams are determined by computing the chemical potential of the species as a function of temperature and partial pressures of H2O, HCl, O2 and H2. The stability and nature of the Pt species are highly sensitive to the activation conditions. Under O2, high temperatures favour PtO2 while under H2, platinum is easily reduced to Pt(0). Chlorine modifies the coordination sphere of platinum during calcination by stabilizing PtCl4 and shifts the reduction of platinum to higher temperatures under H2.  相似文献   

11.
To find an optimal formulation of oil-in-water (O/W) emulsions (φo = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier.  相似文献   

12.
Emulgel is a new innovatory technique for drug development permitting controlled release of active ingredients for topical administration. We report a stable emulgel of 4% Piper nigrum extract (PNE) prepared using 80% ethanol. The PNE-loaded formulation had an antioxidant activity of 84% and tyrosinase inhibition was 82%. Prepared formulation rendered spherical-shaped globules with high zeta potential (−45.5 mV) indicative of a stable system. Total phenolic contents were 58.01 mg GAE/g of dry extract whereas total flavonoid content was 52.63 mg QE/g of dry extract. Sun protection factor for PNE-loaded emulgel was 7.512 and formulation was stable without any evidence of physical and chemical changes following 90 days of storage. Gas chromatography-mass spectroscopy (GC-MS) revealed seventeen bioactive compounds in the PNE including monoterpenoids, triterpenoids, a tertiary alcohol, fatty acid esters, and phytosterols. In silico studies of GC-MS identified compounds show higher binding affinity in comparison to standard kojic acid indicating tyrosinase inhibition. It can be concluded that PNE-loaded emulgel had prominent antioxidant and tyrosinase inhibition and can be utilized as a promising topical system for anti-aging skin formulation.  相似文献   

13.
Oral candidiasis (OC) is a fungal infection caused by an opportunistic fungi Candida albicans, which is found in the normal flora of healthy people. In this study, we examined the anti-candidal effect of green synthesized silver nanoparticles using leaf extract of Erodium glaucophyllum (EG-AgNPs) against C. albicans in vitro and in vivo. EG-AgNPs were synthesized for the first time using E. glaucophyllum extract and characterized by imaging (transmission electron microscopy (TEM), UV-VIS spectroscopy, zeta potential, X-ray diffraction (XRD), Energy dispersive x-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). A mouse model of OC was used for in vivo study. The agar well diffusion method showed the anti-candidal activity of EG-AgNPs against C. albicans with MIC 50 µg/mL. EG-AgNPs inhibited the dimorphic transition of C. albicans and suppressed the formation of biofilm by 56.36% and 52%, respectively. Additionally, EG-AgNPs significantly inhibited the production of phospholipases and proteinases by 30% and 45%, respectively. EG-AgNPs cause cytoplasm disintegration and deterioration of cell wall as imaged by SEM and TEM. Interestingly, EG-AgNPs did not display any cytotoxicity on the human gingival fibroblast-1 HGF-1 cell line at MIC concentrations. Topical treatment of the tongue of the OC mouse model with EG-AgNPs showed significant reduction in candidal tissue invasion, less inflammatory changes, and no tissue modification, in association with marked low scare and hyphal counts as compared to control group. In conclusion, our data demonstrated the potent inhibitory action of EG-AgNPs on the growth and morphogenesis of C. albicans in vitro and in vivo. Thus, EG-AgNPs represent a novel plausible therapeutic approach for treatment of OC.  相似文献   

14.
A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, −1, and −1.414). According to the Design Expert software’s predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.  相似文献   

15.
Garlic’s main bioactive organosulfur component, diallyl trisulfide (DATS), has been widely investigated in cancer models. However, DATS is not suitable for clinical use due to its low solubility. The current study seeks to improve DATS bioavailability and assess its chemopreventive and chemosensitizing properties in an AOM-induced colorectal cancer model. The polyethylene glycol coated Distearoylphosphatidylcholine/Cholesterol (DSPC/Chol) comprising DATS-loaded DATSL and doxorubicin (DOXO)-encapsulated DOXL liposomes was prepared and characterized. The changes in the sensitivity of DATS and DOXO by DATSL and DOXL were evaluated in RKO and HT-29 colon cancer cells. The synergistic effect of DATSL and DOXL was studied by cell proliferation assay in the combinations of IC10, IC25, and IC35 of DATSL with the IC10 of DOXL. AOM, DATSL, and DOXL were administered to different groups of mice for a period of 21 weeks. The data exhibited ~93% and ~46% entrapment efficiency of DATSL and DOXL, respectively. The size of sham liposomes was 110.5 nm, whereas DATSL and DOXL were 135.5 nm and 169 nm, respectively. DATSL and DOXL exhibited significant sensitivity in the cell proliferation experiment, lowering their IC50 doses by more than 8- and 14-fold, respectively. However, the DATSL IC10, IC25, and IC35 showed escalating chemosensitivity, and treated the cells in combination with DOXL IC10. Analysis of histopathological, cancer marker enzymes, and antioxidant enzymes revealed that the high dose of DATSL pretreatment and DOXL chemotherapy is highly effective in inhibiting AOM-induced colon cancer promotion. The combination of DATSL and DOXL indicated promise as a colorectal cancer treatment in this study. Intermolecular interactions of DATS and DOXO against numerous cancer targets by molecular docking indicated MMP-9 as the most favourable target for DATS exhibiting binding energy of −4.6 kcal/mol. So far, this is the first research to demonstrate the chemopreventive as well as chemosensitizing potential of DATSL in an animal model of colorectal cancer.  相似文献   

16.
Type 2 diabetes mellitus has been a major health issue with increasing morbidity and mortality due to macrovascular and microvascular complications. The urgent need for improved methods to control hyperglycemic complications reiterates the development of innovative preventive and therapeutic treatment strategies. In this perspective, xanthone compounds in the pericarp of the mangosteen fruit, especially α-mangostin (MGN), have been recognized to restore damaged pancreatic β-cells for optimal insulin release. Therefore, taking advantage of the robust use of nanotechnology for targeted drug delivery, we herein report the preparation of MGN loaded nanosponges for anti-diabetic therapeutic applications. The nanosponges were prepared by quasi-emulsion solvent evaporation method. Physico-chemical characterization of formulated nanosponges with satisfactory outcomes was performed with Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Zeta potential, hydrodynamic diameter, entrapment efficiency, drug release properties, and stability studies at stress conditions were also tested. Molecular docking analysis revealed significant interactions of α-glucosidase and MGN in a protein-ligand complex. The maximum inhibition by nanosponges against α-glucosidase was observed to be 0.9352 ± 0.0856 µM, 3.11-fold higher than acarbose. In vivo studies were conducted on diabetic rats and plasma glucose levels were estimated by HPLC. Collectively, our findings suggest that MGN-loaded nanosponges may be beneficial in the treatment of diabetes since they prolong the antidiabetic response in plasma and improve patient compliance by slowly releasing MGN and requiring less frequent doses, respectively.  相似文献   

17.
Biodegradable stents are not established in neurovascular interventions. In this study, mechanical, radiological, and histological characteristics of a stent prototype developed for neurovascular use are presented. The elasticity and brittleness of PLA 96/4, PLDL 70/30, PCL, and PLGA 85/15 and 10/90 polymers in in vitro experiments are first analyzed. After excluding the inapt polymers, degradability and mechanical characteristics of 78 PLGA 85/15 and PLGA 10/90 stent prototypes are analyzed. After excluding PLGA 10/90 stents because of rapid loss of mass PLGA 85/15 stents in porcine in vivo experiments are analyzed. Angiographic occlusion rates 7 d, 1 month, 3 months, and 6 months after stent implantation are assessed. Histological outcome measures are the presence of signs of inflammation, endothelialization, and the homogeneity of degradation after six months. One case of stent occlusion occurs within the first 7 d. There is a prominent foreign‐body reaction with considerable mononuclear and minor granulocytic inflammation combined with incomplete fragmental degradation of the struts. It is possible to produce a stent prototype with dimensions that fit the typical size of carotid arteries. Major improvements concerning thrombogenicity, degradation, and inflammatory response are required to produce biodegradable stents that are suitable for neurovascular interventions.  相似文献   

18.
This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and β-conglycinin α/α’ subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and β-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349–K356) and β-conglycinin α subunit region 7 (E556–E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage.  相似文献   

19.
Twenty-four analogs based on triazinoindole bearing benzimidazole/benzoxazole moieties (1–25) were synthesized. Utilizing a variety of spectroscopic methods, including 1H-, 13C-NMR, and HREI-MS, the newly afforded compounds (1–25) were analyzed. The synthesized analogs were tested against urease enzyme (in vitro) as compared to the standard thiourea drug. All triazinoindole-based benzimidazole/benzoxazole analogs (1–25) exhibited moderate to excellent inhibition profiles, having IC50 values of 0.20 ± 0.01 to 36.20 ± 0.70 μM when evaluated under the positive control of thiourea as a standard drug. To better understand the structure–activity relationship, the synthesized compounds were split into two groups, “A” and “B.” Among category “A” analogs, analogs 8 (bearing tri-hydroxy substitutions at the 2,4,6-position of aryl ring C) and 5 (bearing di-hydroxy substitutions at the 3,4-position of aryl ring C) emerged as the most potent inhibitors of urease enzyme and displayed many times more potency than a standard thiourea drug. Besides that, analog 22 (which holds di-hydroxy substitutions at the 2,3-position of the aryl ring) and analog 23 (bearing ortho-fluoro substitution) showed ten-fold-enhanced inhibitory potential compared to standard thiourea among category “B” analogs. Molecular docking studies on the active analogs of each category were performed; the results obtained revealed that the presence of hydroxy and fluoro-substitutions on different positions of aryl ring C play a pivotal role in binding interactions with the active site of the targeted urease enzyme.  相似文献   

20.
Meloxicam (MLX), which belongs to the oxicam nonsteroidal anti-inflammatory drug derivatives, is an inhibitor of the cyclooxygenase-2 (COX-2) enzyme. Cutaneous adverse effects caused by interaction between UVA radiation and exogenous factors can manifest as phototoxic reactions. Phototoxicity may be a reason for the accumulation of genetic and molecular changes in long-lived cells with low proliferation potential, leading to tumor development. There are several potentially phototoxic drugs, the active component of which is meloxicam. The research aimed to evaluate the influence of MLX and UVAR on skin cells—fibroblasts and melanocytes homeostasis. The obtained results indicated that co-treatment with MLX and UVAR inhibited skin cell proliferation, proportionally to the drug concentration. The observation was confirmed by cytometric analysis of the cell number and viability. The phototoxic effect of MLX was revealed in morphological changes. It was stated that MLX with UVAR lowered the mitochondrial transmembrane potential and changed the cell cycle profile. Additionally, MLX and UVAR caused the disruption of redox homeostasis by lowering the intracellular level of reduced thiols. The presented study revealed that the phototoxic activity of MLX is associated with oxidative stress induction and disruptions in cell homeostasis. The differences in the phototoxic effects of MLX at the cellular level may be related to the different content of melanin pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号