首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New azadioxaphosphabicyclo[3.3.0]octane ligands showing a trans arrangement with regard to the two five-membered heterocycles, were obtained as a mixture of three conformers, in agreement with molecular modelling studies. The stability of oxaphosphane ligands was studied under basic catalytic conditions, monitored by NMR spectroscopy. Palladium catalytic systems containing these ligands were active in Suzuki C-C cross-coupling reactions between phenylboronic acid and aryl halides (bromide and chloride derivatives) bearing electron-donor or electron-withdrawing substituents, in both organic and ionic liquid solvents. The catalytic systems showed a high stability even under the most severe reaction conditions used in this work. The ionic liquid catalytic phase could be recycled up to ten times without significant activity loss.  相似文献   

2.
单一非离子表面活性剂制备胶质气体泡沫的稳定性   总被引:2,自引:0,他引:2  
用单一的十二烷基醇聚氧乙烯醚(C12EOn)非离子表面活性剂制备了稳定的胶质气体泡沫(CGA). 采用偏光显微镜和流变仪对其表面活性剂溶液相态和泡沫体系的微观结构及流变行为进行研究, 以探索CGA的稳定化机理. 实验结果表明, 分别由C12EO3和C12EO5制备的CGA分散体系中均存在层状液晶相, 层状液晶吸附在气泡的界面上. CGA稳定性可达20 h以上, 没有明显的相分离发生. 而分别由C12EO7和C12EO9制备的CGA呈现由胶束组成的连续相, 不存在液晶相结构, 因而其稳定性较差, 仅能维持数分钟. 实验结果表明, 层状液晶相结构可以显著提高CGA的稳定性. 其稳定作用的机理是通过影响泡沫排液过程, 增强Gibbs-Marangoni效应, 从而提高气泡液膜强度和减缓气相扩散速率.  相似文献   

3.
Lamellar lyotropic liquid-crystalline systems are thermodynamically stable, optically isotropic and are formed spontaneously. New possibilities for the development of controlled drug delivery systems are inherent in these systems in consequence of their stability and special, skin-friendly structure. The aim was to formulate and study two-component or multicomponent compositions with a relatively low Brij 96V content, liquid paraffin, glycerol and water for therapeutic purposes. The liquid crystals were examined by polarizing light microscopy and transmission electron microscopic observation of replicas produced by the freeze–fracture technique to demonstrate the presence of lamellar liquid-crystalline domains. The existence of a regular structure was determined by X-ray diffraction.  相似文献   

4.
Potassium leakage was studied in liquid membrane systems containing various emulsifiers and compared with emulsion, stability in the storage test. The effects of various parameters upon emulsion stability and the leakage of standard traces are discussed. The transfer of cations can be caused by emulsion breaking, by transport with the specific carrier and/or with surfactants used as emulsifiers. The latter case becomes especially important when hydrophilic surfactants, e.g. ones containing polyoxyethylene chains, are present in liquid membranes. In systems containing hydrophobic emulsifiers the transfer of potassium is relatively low. In each case considered the effect of emulsifiers upon the transfer of the standard tracer should be checked prior to using the leakage test to characterize emulsion stability.  相似文献   

5.
Stimuli-responsive liquid foams and bubbles are systems for which the stability, structure, shape, and movement can be controlled by the application of stimuli. The foam stability can be modified by a stimulus which can change solution condition (pH, temperature, and ionic strength) or with the application of an external field (light and magnetic). Different foam stabilizers have been described in the literature to design these responsive foams systems ranging from surfactants, peptides, polymers, soft polymer particles, surfactants self-assembly, crystalline particles, emulsion droplets, and solid particles. This review aims to cover the recent advances of the design of stimuli-responsive liquid foams and their applications. Responsive liquid foams are attractive in textile coloring process, biomedical application, washing, and material recovery processes.  相似文献   

6.
The stability of free films and froths is considered theoretically and details of experiments are reported for various liquid systems.  相似文献   

7.
Thermal non-oxidative degradability of two epoxy thermosets was studied. Investigations were carried out on a non-commercial liquid crystalline structure and its isotropic homologue in order to provide further insight into the mechanism and kinetics of thermal degradation of the proposed systems. The studies were done by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). For the first time the degradation of a liquid crystalline epoxy was studied using an advanced isoconversional kinetic method. The results were used to predict the thermal stability of both types of epoxy networks. GC-MS analysis was applied on evolved gas during degradation to elucidate the degradation mechanism in accordance with the kinetic results. The liquid crystalline structure has a different mechanism of decomposition in comparison with its isotropic homologue. In spite of a higher Tg value, it shows a similar thermal stability but a lower release of degradation compounds.  相似文献   

8.
In the present study the solid and liquid phase behaviour of mandelic acid cyclodextrin systems were studied. The samples were prepared using dry grinding/kneading technique in the absence of any solvent. Thermoanalytical methods (TG, DSC, EGD) were used to characterise the solid compounds. In liquid phase the stoichiometry and the stability constants of the complexes formed were determined using UV spectrophotometry. Partial complex formation was found in case of all cyclodextrins used. The amount of uncomplexed mandelic acid varied between 10–20% of the total guest content.  相似文献   

9.
Five new chiral liquid crystal systems induced by intermolecular hydrogen bonding between 4-[(s)-2-chloro-3-methyl]butyroyloxy-4'-stilbazole (MBSB, proton acceptor) and 4-alkoxybenzoic acids (nBA, proton donors) were prepared. Their liquid crystalline properties were investigated by DSC and polarized optical microscopy. Chiral nematic and chiral smectic phases were observed, and the thermal stability of one complex was studied through temperature dependent infrared spectroscopy.  相似文献   

10.
The extensional viscoelasticity modulus and conductivity of liquid films and stability of bulk foams were investigated respectively. The effects of sinusoidal exciting frequency, polymer type, and polymer concentration on liquid film viscoelasticity modulus were systematically discussed. Higher film viscoelasticity modulus could be assigned for FS01/MPAM film systems than for FS01/HPAM ones. The film conductivity result showed that FS01/HPAM or FS01/MPAM liquid film systems could delay the liquid drainage speed under dynamic conditions compared with FS01 ones. Bulk foam test based on Waring Blender method indicated that FS01/HPAM foam was more stable than FS01/MPAM. Compared with static bulk foam test, the extensional viscoelasticity and conductivity method could reflect the dynamic behavior of liquid films.  相似文献   

11.
Although liquid-liquid interfaces are as important as liquid-vapor interfaces in many fields, including biology and technology, they have received much less attention in terms of systematic experimental studies. Many techniques are, in principle, relevant to both types of interface; likewise similar theories can often be developed for both. The basic physical chemistry of isolated interfaces, i.e. interfaces between two bulk liquids in mutual contact, is introduced first in this review. The interfacial tension, the forces acting at interfaces (i.e. van der Waals, Coulombic and steric forces), and the thermodynamic treatment of such systems are each considered, and the experimental techniques and some of the more important results are summarized. Next, the problem of three-phase contact (in which two or three of the phases are liquid) is introduced, and the concept of wetting and spreading considered. This leads to a discussion of systems in which two bulk phases (either, or both, of which are liquids) are separated by a liquid film; the mutual interaction of the two interfaces now becomes relevant. The stability of such systems is discussed in terms of the various forces acting within the systems, plus any external forces, such as gravity. The thermodynamics of liquid films is briefly introduced, and some discussion of the magnitude of the two interfacial tensions given. Finally, it is shown that the factors governing the formation and stability of liquid droplets and emulsion systems are directly related to the consideration of the earlier sections.  相似文献   

12.
Equations for a foam height, multiplicity, and foam stability of shampoo were suggested. Model deriving was based on an assumption that foams was monodispersed systems consisting from cells of gas in the form of pentagonal dodecahedra with liquid films created by two adsorption monolayers of surfactant monomers.  相似文献   

13.
An experimental technique is developed for assessing stability of thin liquid films by application of electric potential to compress the liquid film and to simultaneously measure the electrical properties of the system. The concept involves creating a thin film at the intersection of two microchannels etched onto a glass substrate. A ramped DC potential difference is applied across the film, which develops an electrical stress across the film. Increasing the potential to a critical value leads to the rupture of the film. The critical potential is used to assess the stability of the liquid film. Small channel dimensions in this microfluidic platform allow characterization of thin films formed between micron-sized droplets representing systems with high capillary pressures, analysis of which are typically beyond the scope of conventional thin film characterization techniques. The results of DC potential breakdown of films show that critical potential can be considered as a measure of thin film stability.  相似文献   

14.
We reacted various dimeric, liquid‐crystalline epoxy–imine monomers, differing in the length of the central aliphatic spacer or the dipolar moments, with heptanedioic acid. The resulting systems showed a liquid‐crystalline phase in some cases, depending on the dimer and on the reaction conditions. The systems were characterized with respect to their mesomorphic properties and then were submitted to dynamic mechanical thermal analysis in both fixed‐frequency and frequency‐sweep modes in the shear sandwich configuration. The arrangement in the liquid‐crystalline phase seemed to be mainly affected both by the polarization of the mesogen and by the reaction temperature, which favored the liquid‐crystalline arrangement when it was lying in the range of stability of the dimer mesophase. In agreement with other recent literature data, dynamic mechanical thermal analysis results suggested that the presence of the mesogen directly incorporated into the main chain increased the lifetimes of the elastic modes both in the isotropic phase and in the liquid‐crystalline phase with respect to side‐chain liquid‐crystalline elastomers and that the time–temperature superposition principle did not hold through the liquid‐crystalline‐to‐isotropic transition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6270–6286, 2006  相似文献   

15.
The ability of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Poloxamers) to form "gels" (lyotropic liquid crystalline structures) in water is of interest to pharmaceutical applications. In such applications the presence of polar organic solvents is often desirable or required. The effect of such solvents on the stability of lyotropic liquid crystalline gels formed by PEO-PPO-PEO block copolymers was assessed by studying the phase behavior and structure in ternary isothermal (25 degrees C) systems of pharmaceutical interest consisting of Poloxamer 407 (EO(100)PO(70)EO(100)), water, and one of the following solvents (referred to here collectively as "glycols"): glycerol, propylene glycol, ethanol, polyethylene glycol 400, and glucose. Small-angle X-ray scattering was employed to establish the structure of the liquid crystals obtained and to determine their characteristic length scales. The stability range of the liquid crystalline gel phases in the systems studied was found to vary with the glycol type. For example, the micellar cubic structure can accommodate about 0.85:1 parts glucose per part water (in terms of weight) and up to as much as 5.5:1 parts propylene glycol per part water. A correlation between the glycol effects on the stability of the liquid crystalline phases and glycol physiochemical characteristics such as octanol/water partition coefficient or solubility parameter is proposed.  相似文献   

16.
Development of new formulations for topical use and cosmetic and pharmaceutical delivery agents has increased the complexity of emulsified systems. Liquid crystals, known since the nineteenth century are the third phase of an emulsion, being responsible for increasing its stability and the solubility of substances poorly soluble in water, or the oily phase, modulating the release of drugs imprisoned in its structure and promoting hydration of the skin surface. In the present work we developed oil/water emulsions, making use of Marigold oil (Calendula officinalis L) and ethoxylated fat alcohols as surfactant. The required HLB value for marigold oil was determined to be 6.0. The surfactants were associated in lipophilic/hydrophilic pairs. The lipophilic surfactants were Ceteth‐2 and Steareth‐2 and the hydrophilic surfactants were Steareth‐20, Ceteareth‐20, Ceteareth‐5, and Ceteth‐10. To identify the liquid crystalline phases, the emulsions were analyzed by polarized light microscopy. The physical stability was evaluated by rheology and zeta potential analysis. All emulsions presented lamellar liquid crystal structures. Results showed that this type of surfactant is able to produce liquid crystal in the system, with slight difference in appearance, influencing the physical stability, according to the methods applied.  相似文献   

17.
Biocompatible lipidic formulations: phase behavior and microstructure   总被引:1,自引:0,他引:1  
Biocompatible systems formulated for use in the food, cosmetic, and pharmaceutical fields are characterized. Ternary phase diagrams of mixtures of natural lipids (glycerol trioleate, glycerol monooleate, diglycerol monooleate, and lecithin) and water were investigated by means of optical microscopy in polarized light and by multinuclear NMR spectroscopy. All systems showed a microemulsion region at high oil content and a large area of coexistence of two liquid crystalline (hexagonal and lamellar) phases. 1H and 13C NMR self-diffusion measurements were used to characterize microstructural features of the microemulsions. On water dilution, the two-phase liquid crystalline region transforms into a creamy emulsion area where the droplets of water are stabilized by both the lamellar and the hexagonal phases, as indicated by 2H NMR measurements. Due to the very effective dispersing action of the two liquid crystalline phases, these emulsions show a high stability toward phase separation.  相似文献   

18.
Particle swarm optimization is a novel evolutionary stochastic global optimization method that has gained popularity in the chemical engineering community. This optimization strategy has been successfully used for several applications including thermodynamic calculations. To the best of our knowledge, the performance of PSO in phase stability and equilibrium calculations for both multicomponent reactive and non-reactive mixtures has not yet been reported. This study introduces the application of particle swarm optimization and several of its variants for solving phase stability and equilibrium problems in multicomponent systems with or without chemical equilibrium. The reliability and efficiency of a number of particle swarm optimization algorithms are tested and compared using multicomponent systems with vapor–liquid and liquid–liquid equilibrium. Our results indicate that the classical particle swarm optimization with constant cognitive and social parameters is a reliable method and offers the best performance for global minimization of the tangent plane distance function and the Gibbs energy function in both reactive and non-reactive systems.  相似文献   

19.
以非离子表面活性剂单硬脂酸甘油酯(GMS)制备出稳定的微泡沫. 采用偏光显微镜、冷冻断裂蚀刻透射电子显微镜(FF-TEM)、差示扫描量热仪(DSC)和流变仪对其表面活性剂溶液相态、泡沫体系的微观结构、相变行为和流变性进行研究以探索微泡沫的稳定机理. 实验结果表明, 表面活性剂分子吸附在气泡界面, 发生晶化形成有序、紧密排列的层状液晶凝胶相液膜, 该液膜具有较强的刚性, 能抵抗由Laplace附加压力驱使的气泡溶解和聚并行为. 微泡沫可稳定10个月, 无明显的相分离和气泡破裂现象. 其稳定作用机理是通过影响泡沫排液过程, 增强Gibbs-Marangoni效应, 从而提高了气泡液膜强度, 减缓了气相扩散速率.  相似文献   

20.
Solubilization in non-aqeuous lyotropic liquid crystals was investigated by determination of the stability region of a lamellar liquid crystal in systems of triethanolamine (TEA), dodecylbenzenesulfonic acid (DBSA) and a series of solvents.

The solubilization maximum was moved towards higher OBSA/TEA ratios for polar solvents and the reverse for non-polar ones. The solvents caused the maximum increase of interlayer spacing when added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号