首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we present a novel etching method to fabricate the superhydrophobic Al surfaces in a salt solution. Hierarchical rough structures composed of micrometer-scale pits, protrusions, and rectangle plateaus and nanometer-scale step-like structures are formed on the Al surfaces by the self-assembled primary cell assisted etching and the preferential corrosion of grain boundaries and dislocations. After fluoroalkylsilane modification, the superhydrophobic Al surfaces with a 166.4° water contact angle and a 1° rolling angle are obtained. The developed method does not use any strong acids and has a smaller harm to the environment and operators.  相似文献   

2.
An excellent hydrophobic and super-oleophilic surface on 316 L stainless steel was obtained by femtosecond laser irradiation in deionized water. Using lower laser fluence and scanning speed of femtosecond laser irradiation, a single stripe structure was fabricated and the corresponding contact angle to water and ethylene glycol was 127.2° and 19.6°, respectively. When laser fluence and scanning speeds increased, stripes, grooves, and holes structures were obtained on the surface and the corresponding water contact angles increased and ethylene glycol contact angles decreased, with a maximum water contact angle of 142.5° and minimum ethylene glycol contact angle of 6.4°.  相似文献   

3.
A superhydrophobic coating applied in corrosion protection was successfully fabricated on the surface of aluminum alloy by chemical etching and surface modification. The water contact angle on the surface was measured to be 161.2° ± 1.7° with sliding angle smaller than 8°, and the superhydrophobic coating showed a long service life. The surface structure and composition were then characterized by means of SEM and XPS. The electrochemical measurements showed that the superhydrophobic coating significantly improved the corrosion resistance of aluminum alloy. The superhydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it was found that only about 6% of the water surface is in contact with the metal substrate and 94% is in contact with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A facile method was developed for the fabrication of the methyltriethoxysilane based transparent and superhydrophobic coating on glass substrates. The transparent and hydrophobic coatings were deposited on the glass substrates, using spray deposition method followed by surface modification process. A spray deposition method generates hierarchical morphology and post surface modification with monofunctional trimethylchlorosilane decreases the surface free energy of coating. These combined effects of synthesis produces bio-inspired superhydrophobic surface. The deposited coating surface shows high optical transparency, micro-nano scale hierarchical structures, improved hydrophobic thermal stability, static water contact angle of about 167° ± 1°, low sliding angle about 2° ± 1° and stable superhydrophobic nature. This paper provides the very simple sol–gel approach to the fabrication of optically transparent, thermally stable superhydrophobic coating on glass substrates. This fabrication strategy may easily extend to the industrial scale up and high-technology fields.  相似文献   

5.
This work studies the wettability alteration using nanoporous silica aerogels for enhanced oil recovery. Water wet flat glass and outcrop sandstone are used for this aim. Modified silica aerogels are synthesized with cheap water glass as the precursor, and ambient pressure drying method. Sessile drop method was used to measure the contact angles. Sandstones with 0° contact angle changed to mixed wet with 88° contact angle, and flat glasses with a 30° contact angle change to 70° contact angle. Results show that silica aerogels have a great potential in wettability alteration of reservoir rocks by adsorption and deposition mechanisms.  相似文献   

6.
This paper focuses on the preparation of a superhydrophobic coating on glass/porcelain insulators which possess anti-icing property below freezing temperature. Inspired by lotus-effect, the fabrication of a superhydrophobic coating has two steps: the first step is to construct a hierarchical SiO2 coating on the substrate surface, and the second step is the chemical modification of the SiO2 coating with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PDTS). The precursor for the hierarchical SiO2 coating is a suspension of SiO2 sol particles and dispersible SiO2 powder particles. According to the TEM testing, SiO2 sol particles prepared by sol–gel method has an average particle size about 2–5 nm, while the size of the dispersible SiO2 particles is ca. 20 nm. The precursor was sprayed on glass/porcelain insulators, and then dried at ambient condition, finally heat-treated at 773 K for 2 h. The morphology of the superhydrophobic coating was characterized by TEM and AFM, and experimental results indicated that the coating featured [hierarchical structure consisting of both large bumps with micron-sized height (0.8 μm) and tiny papillae with the size about 30 nm] micron-sized roughness (0.8 μm) combined with nano-sized roughness (about 2 nm). Moreover, the scratch test showed that the coating tightly adhered to the surface of the glass/porcelain insulators. The superhydrophobic property of the coating was examined by a contact angle measurement, and the results demonstrated that the static water contact angle is high up to 163.6°, and the sliding angle is 1.4°. The superhydrophobic property of the coating was also confirmed by the outdoor tests in winter, and it was found that the superhydrophobic coating had the function in anti-icing, based on which the anti-icing mechanism underlying was discussed in terms of the interaction between impacting droplets and superhydrophobic surface.  相似文献   

7.
We describe a simple and inexpensive technique to fabricate superhydrophobic coatings with furfural acetone resin/poly (tetrafluoroethylene) (FAR/PTFE) composites. An interesting hierarchical structure with dispersed cavities and protuberances in microscale was achieved. The water contact angle (CA) of the superhydrophobic surface is 157° and the sliding angle is about 5°. The coatings can be applied to large substrates by spray coating with ease and possess high cohesional strength with the substrates. Meanwhile, the superhydrophobic coatings show long-term stability in pure water and acidic solutions with higher concentration.  相似文献   

8.
聚苯硫醚超疏水复合涂层的制备与性能   总被引:1,自引:0,他引:1  
利用工业原料聚苯硫醚微粉和疏水性二氧化硅纳米粉末,采用喷涂法在瓷砖表面制备了疏水复合涂层.研究了热处理温度、组分配比对涂层表面形貌、粗糙度和接触角的影响,发现随着热处理温度升高,涂层表面粗糙度增大,随着疏水性二氧化硅含量的增加,由于表面聚集的疏水性二氧化硅增多,涂层疏水性增强,在热处理温度为280℃、疏水性二氧化硅与聚苯硫醚质量比为1∶1时,可获得超疏水涂层,涂层的接触角大于150°,滚落角小于4°,pH值为1~14的水溶液在其表面都具有很高的接触角.超疏水涂层具有良好的自清洁效果,并且经落沙法实验测定,超疏水涂层耐刮伤性能良好.  相似文献   

9.
The creation of low hysteresis superhydrophobic paper is reported using a combination of oxygen plasma etching and plasma deposition of an 80 nm non-fluorinated, hydrophilic diamond-like carbon (DLC) coating. The DLC has an equilibrium (flat surface) contact angle (θ e ) of 68.2° ± 1.5°, which is well below the 90° contact angle that is typically believed to be a prerequisite for superhydrophobicity. Coating of paper substrates with the DLC film yields an advancing contact angle of 124.3° ± 4.1°, but the surface remains highly adhesive, with a receding contact angle <10°. After 60 min of plasma etching and DLC coating, a low hysteresis, superhydrophobic surface is formed with an advancing contact angle of 162.0° ± 6.3° and hysteresis of 8.7° ± 1.9°. To understand the increase in contact angle and decrease in hysteresis, atomic force microscopy and optical profilometry studies were performed. The data demonstrates that while little additional nanoscale roughness is imparted beyond the first 5 min of etching, the roughness at the microscale continually increases. The hierarchical structure provides the appropriate roughness to create low hysteresis superhydrophobic paper from a hydrophilic coating.  相似文献   

10.
Robust superhydrophobic surface exhibiting anti-fouling and self-cleaning ability were successfully fabricated by nano TiO2 modified by γ-aminopropyltriethoxysilane (KH550) and polydimethylsiloxane (PDMS) via wire rod coating. Due to the lower surface energy of PDMS and the hierarchical structure caused by the different aggregation sizes of TiO2 nanoparticles, the contact angle of the resulting superhydrophobic coating was 154.5° and the rolling angle was 3.5°. And the coated paper still had good non-wettability under water immersion. In addition, the coated paper was tolerant to mechanical damage and various temperature conditions. Even after 40 sandpaper wear cycles, the coating can still maintain good mechanical stability and superhydrophobicity. The superhydrophobic paper was used for oil-water separation, the separation efficiency was about 98% even after used 10 times. Furthermore, the prepared superhydrophobic paper exhibited excellent self-cleaning and anti-fouling properties, as well as demonstrated superb resistance to various water solutions owing to its high hydrophobicity. Moreover, the prepared superhydrophobic paper has application prospects in the industry of special wetting materials.  相似文献   

11.
Functional differences between superhydrophobic surfaces, such as lotus leaf and rose petals, are due to the subtle architectural features created by nature. Mimicry of these surfaces with synthetic molecules continues to be fascinating as well as challenging. Herein, we demonstrate how inherently hydrophilic alumina surface can be modified to give two distinct superhydrophobic behaviors. Functionalization of alumina with an organic ligand resulted in a rose‐petal‐like surface (water pinning) with a contact angle of 145° and a high contact angle hysteresis (±69°). Subsequent interaction of the ligand with Zn2+ resulted in a lotus‐leaf‐like surface with water rolling behavior owing to high contact angle (165°) and low‐contact‐angle‐hysteresis (±2°). In both cases, coating of an aromatic bis‐aldehyde with alkoxy chain substituents was necessary to emulate the nanowaxy cuticular feature of natural superhydrophobic materials.  相似文献   

12.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

13.
使用在含有甲基MQ(M:单官能团Si-O单元R3SiO1/2, Q:四官能团Si-O单元SiO2)硅树脂与疏水SiO2的二甲苯溶液中浸渍的方法,在聚酯织物表面制备了耐用超疏水涂层。经过处理后,微米级聚酯纤维表面被紧密的疏水纳米颗粒包裹,通过这种方法降低了纤维的表面能。聚酯织物展现出良好的超疏水特性,与水滴的静态接触角为156°,滚动角为5°。得到的超疏水聚酯织物在机械磨损、酸碱环境及紫外线照射条件下,表现出了良好的稳定性。此外,用超疏水聚酯织物作为过滤材料得到的油水分离效率达99%以上。该方法为大面积工业制备超疏水织物提供了新的思路。  相似文献   

14.
In this paper, the icephobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions using a closed-loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating aluminum and steel substrate plates with nano-structured hydrophobic particles. The superhydrophobic plates, along with uncoated controls, were exposed to a wind tunnel air flow of 12 m/s and ?7 °C with deviations of ±1 m/s and ±2.5 °C, respectively, containing micrometer-sized (~50 μm in diameter) water droplets. The ice formation and accretion were observed by CCD cameras. Results show that the superhydrophobic coatings significantly delay ice formation and accretion even under the dynamic flow condition of highly energetic impingement of accelerated supercooled water droplets. It is found that there is a time scale for this phenomenon (delay in ice formation) which has a clear correlation with contact angle hysteresis and the length scale of the surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finest surface roughness. The results suggest that the key for designing icephobic surfaces under the hydrodynamic pressure of impinging droplets is to retain a non-wetting superhydrophobic state with low contact angle hysteresis, rather than to only have a high apparent contact angle (conventionally referred to as a “static” contact angle).  相似文献   

15.
Nowadays, most superhydrophobic surfaces will lose their superhydrophobic performance once they encounter oil, and adhesive strength of superhydrophobic coating is low. Therefore, the superhydrophobic coating with good oleophobicity and high adhesive strength is popular with people. A superhydrophobic and oleophobic coating is characteristic of antifouling and self-cleaning, due to the appearance of special structures, such as overhang and re-entrant. In this work, flower-like zinc oxide (ZnO) particles free of fluorine and fluorine-containing epoxy were used to establish the coating with a similar re-entrant structure. Flower-like ZnO particles were prepared by a chemical precipitation method, and the water contact angle of flower-like ZnO is up to 149 ± 1°. For the coating, flower-like ZnO particles were almost covered by fluorine-containing epoxy synthesized through click reaction so that the adhesive strength between the coating and the matrix is high, superior to some coatings in the references. The surfaces made of flower-like ZnO and fluorinated epoxy possess superhydrophobic and oleophobic properties. The contact angle of the coating for water, diiodomethane, glycerol, and glycol is 154 ± 0.7°, 138 ± 0.6°, 156 ± 0.7°, and 150 ± 0.7°, respectively. After withstanding 70 cycles under the pressure of 1 kPa, the coating is still superhydrophobic. Also, the coating possesses a good self-cleaning and anti-icing property.  相似文献   

16.
Fabrication of polymer‐carbon composite nanostructure with good dispersion of each other is critical for the desired application due to the nanostructure flaws, agglomeration, and poor absorption between the 2 materials. Fabrication of superhydrophobic surface coating composites of polytetrafluoroethylene (PTFE) with multiwalled carbon nanotubes (MWCNTs) through supercritical fluid processing was explored in this study. Homogeneity of the composite was characterized by X‐ray diffraction and Raman spectroscopy studies, which reveal that the PTFE and MWCNT are uniform in the composite. Microstructural surface evaluation of field‐emission scanning electron microscope and high‐resolution transmission electron microscope studies display that the coating composite possesses roughness structures and fibrillation of the superhydrophobic surface coating. Superhydrophobic character was evaluated on fiber‐reinforced plastic (FRP) sheets, which showed that the prepared coating composite surface showed self‐cleaning properties with a high water contact angle of 162.7°. The surface wettability was studied by increasing different temperatures (30°C to 300°C) in PTFE‐MWCNT composite, which reveals that the FRP sheets were thermally stable up to 200°C and afterward; they transformed from superhydrophobic to hydrophilic state at 250°C. The superhydrophobic surfaces are thermally stable in extreme environmental conditions, and this technique may be used and extendable for large‐scale applications.  相似文献   

17.
A facile and low-cost superhydrophobic nanocomposite coating on paper surface was fabricated through one-step simply spraying dispersion, using hydrophobic silica nanoparticles as a filter (SiNPs) and polyvinylidene fluoride (PVDF) as a film-forming material. Hydrophobic SiNPs were fabricated via co-hydropholysis and condensation of TEOS and long-chain alkyl silane based on a simple sol-gel process, and the surface chemical structure of SiNPs was characterized by Fourier transform infrared (FTIR) spectra. The wettability and morphology of the coating surface were measured by contact angle (CA) measurement and scanning electron microscope, respectively. The influence of the mass ratio of hydrophobic SiNPs to PVDF (M(SiNPs:PVDF)) on the superhydrophobicity of paper surface was studied. The results showed that when M(SiNPs:PVDF) was 3:1, the water CA was 156.0 ± 1.0° for the nanocomposite coating with micro/nano-hierarchical structure on paper surface. Further, such superhydrophobic nanocomposite coatings on paper surface showed little adhesive property with water. In addition, the prepared superhydrophobic nanocomposite coating could be applied in other substrates, such as wood, aluminum sheet, stainless steel, polytetrafluoroethylene (PTFE), etc.  相似文献   

18.
Summary: A simple and inexpensive method for forming a low‐density polyethylene (LDPE) superhydrophobic surface by controlling the crystallization behavior of LDPE by adjusting the crystallization time and nucleation rate has been proposed. The resulting porous surface, with hierarchical micro‐ and nanostructures on the beautiful floral designs, has a water contact angle of 173.0° ± 2.5°.

A highly porous surface created by adding nonsolvent (cyclohexanone) followed by evaporation of the LDPE in a vacuum at 25 °C (left, inset shows corresponding water contact angle). Nanostructures on the florallike crystal structures (right).  相似文献   


19.
A stable superhydrophobic surface of stearic acid grafted zinc was fabricated with two steps, that is, the zinc surface was firstly treated with glow discharge electrolysis plasma (GDEP) and then followed by a grafted reaction of stearic acid onto the treated zinc surface. Results indicated that the wettability of zinc substrate changed from superhydrophily to superhyphodrobicity with a water contact angle (CA) up to 158° and a water sliding angle (SA) less than 5°. The surface morphology and composition were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively.   相似文献   

20.
Fabrication of superhydrophobic surface was achieved by electroless deposition of silver film and subsequent immersion into a mixture of stearic acid and cysteamine. The resultant superhydrophobic surface with flower and fall‐leaves like structure showed lotus leaf effect with the water contact angle of about 154° making copper surface water repellant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号