首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of droplet flocculation on the creaming stability of monodisperse n-hexadecane oil-in-water emulsions was studied. The creaming velocity of emulsions with different droplet radii (0.43 and 0.86 μm), droplet concentrations (1-67 vol%), and sodium dodecyl sulfate (SDS) concentrations (7-80 mM) were measured. Depletion flocculation was observed in the emulsions when the aqueous phase SDS concentration exceeded a particular level ( approximately 40 mM for 0.43-μm droplets and approximately 15 mM for 0.86-μm droplets). Creaming was monitored by measuring the back-scattered light from an emulsion as a function of its height. The creaming velocity increased with increasing flocculation and decreased with increasing droplet concentration. These results have important implications for the formulation of emulsion-based materials. Copyright 2000 Academic Press.  相似文献   

2.
The influence of environmental conditions (pH, NaCl, CaCl2, and temperature) on the properties and stability of oil-in-water (O/W) emulsions containing oil droplets surrounded by one-, two-, or three-layer interfacial membranes has been investigated. Three oil-in-water emulsions were prepared with the same droplet concentration and buffer (5 wt % corn oil, 5 mM phosphate buffer, pH 6) but with different biopolymers: (i) primary emulsion: 0.5 wt % beta-Lg; (ii) secondary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan; (iii) tertiary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan, 0-2 wt % gelatin. The secondary and tertiary emulsions were prepared by electrostatic deposition of the charged biopolymers onto the surfaces of the oil droplets so as to form two- and three-layer interfacial membranes, respectively. The stability of the emulsions to pH (3-8), sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) was determined. We found that multilayer emulsions had better stability to droplet aggregation than single-layer emulsions under certain environmental conditions and that one or more of the biopolymer layers could be made to desorb from the droplet surfaces in response to specific environmental changes (e.g., high salt or high temperature). These results suggest that the interfacial engineering technology used in this study could lead to the creation of food emulsions with improved stability to environmental stresses or to emulsions with triggered release characteristics.  相似文献   

3.
The influence of electrostatically-induced heteroaggregation of oppositely charged lipid droplets on the rheology and stability of emulsions has been studied. 20 wt.% oil-in-water emulsions (pH 6) containing oppositely charged droplets were fabricated by mixing cationic lactoferrin-coated lipid droplets with anionic β-lactoglobulin-coated lipid droplets. Emulsions containing mixtures of droplets with different charges (positive or negative) and sizes (large or small) were prepared, and then their overall particle characteristics (ζ-potential and size) and rheology were measured. Emulsions formed by mixing positive droplets and negative droplets that were both relatively small (d(43) ≈ 0.3 μm) exhibited extensive flocculation and had paste-like properties at intermediate positive-to-negative particle ratios. On the other hand, emulsions formed by mixing positive droplets and negative droplets that were both relatively large (d(43) ≈ 3 μm) exhibited little aggregation and had relatively low viscosities at all particle ratios. Emulsions with small negative droplets and large positive droplets (or vice versa), exhibited some aggregation and viscosity enhancement at intermediate particle ratios. The presence of relatively high levels of protein in the aqueous phase of mixed emulsions reduced the level of droplet aggregation and viscosity enhancement observed, which was attributed to the ability of protein molecules to bind to droplet surfaces and neutralize their charges. Electrostatically-induced heteroaggregation of lipid droplets may be a useful means of controlling the physicochemical properties of emulsion-based products in the food, personal care, pharmaceutical and cosmetic industries.  相似文献   

4.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

5.
Droplet evolution in unstable, dilute oil-in-water Pickering emulsions was characterised using a combination of light scattering, confocal microscopy and rheology. Emulsions were formed at concentrations of silanised fumed silica particles that are not sufficient to prevent destabilisation. The key result is that destabilisation initially occurs via a combination of droplet flocculation and permeation. Close contact between the drops enhances oil transfer from smaller drops to the larger ones. The large drops swell over time until the attached particle density is insufficient to protect the drops against coalescence. Examination of the emulsion microstructure revealed the relationship between drop stability and the structural characteristics of the aggregates formed due to coagulation of the silica particles in the emulsions. The implications of these results for controlling Pickering emulsion stability are discussed.  相似文献   

6.
Supramolecular hydrogels have attracted great attention due to their special properties. In this research, bio-based supramolecular hydrogels were conveniently constructed by heating and ultrasounding two components of dehydroabietic acid with a rigid tricyclic hydrophenanthrene skeleton and morpholine. The microstructures and properties of hydrogels were investigated by DSC, rheology, SAXS, CD spectroscopy, and cryo-TEM, respectively. The critical gel concentration (CGC) of the hydrogel was 0.3 mol·L−1 and the gel temperature was 115 °C. In addition, the hydrogel showed good stability and mechanical properties according to rheology results. Cryo-TEM images reveal that the microstructure of hydrogel is fibrous meshes; its corresponding mechanism has been studied using FT-IR spectra. Additionally, oil-in-water gel emulsions were prepared by the hydrogel at a concentration above its CGC, and the oil mass fraction of the oil-in-water gel emulsions could be freely adjusted between 5% and 70%. This work provides a convenient way to prepare bio-based supramolecular hydrogels and provides a new method for the application of rosin.  相似文献   

7.
Hen egg yolk is a traditional ingredient used in a wide variety of food emulsions, especially fluid sauces. Industrial processing of these sauces generally involves heat treatments in order to pasteurise or sterilise them. These heat treatments may cause undesired gelation of the emulsion, because egg yolk proteins are particularly thermosensitive. Heat gelation of oil-in-water emulsions prepared with egg yolk may differ from that of egg yolk solutions, because of the influence of oil droplets on network formation. In this study, we investigated the influence of oil droplets on the gelation of oil-in-water emulsions made with yolk. We studied three pH values: 3.0, 5.0 and 7.0 with a constant NaCl concentration: 0.55 M. Oil droplet size was controlled after emulsification, gelation of solutions and emulsions was monitored in situ by coupling heating with recording viscoelastic properties, and transmission electron microscopy was conducted in heat-set emulsion gels. In an attempt to target the proteins that impose the kinetic of gelation of egg yolk, we repeated the experiment with plasma and granules, the main fractions of yolk. In situ rheology showed that, in our experimental conditions [especially oil volume fraction (0.3) and oil droplet size (d3.2=1 &mgr;m)], emulsions made with yolk and plasma have a similar gelation process with oil droplets acting as inactive fillers. Furthermore, transmission electron microscopy showed similar network characteristics between heated emulsions made with yolk and plasma. Moreover, we demonstrated that acidic conditions provided the fastest gelation of yolk solutions and emulsions. On the other hand, in emulsions prepared with granules, oil droplets behaved as active filler particles and reinforced the gel strength.  相似文献   

8.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in oil-in-water emulsions stabilized by a globular protein was examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2)10 mg/mL beta-Lg added before homogenization; (3) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization. Emulsion 1 contained little nonadsorbed protein (<3%) and underwent extremely rapid and extensive droplet flocculation immediately after homogenization. Emulsion 2 contained a significant fraction of nonadsorbed beta-Lg and exhibited relatively slow droplet flocculation for some hours after homogenization. Measurements on Emulsion 3 showed that the extremely rapid particle growth observed in Emulsion 1 could be arrested by adding native beta-Lg immediately after homogenization. The extent of particle growth in the three types of emulsions was highly dependent on the time that the salt was added to the emulsions, i.e., after 0 or 24 h aging. We postulate that the observed differences are due to changes in droplet surface hydrophobicity caused by differences in the packing or conformation of adsorbed proteins. Our data suggest that history effects have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of protein stabilized oil-in-water emulsions.  相似文献   

9.
The field of emulsion rheology is developing rapidly due to investigations involving monodisperse emulsions having narrow droplet size distributions. The droplet uniformity facilitates meaningful comparisons between experiments, theories, and simulations.  相似文献   

10.
The knowledge on the factors affecting the heat-induced physicochemical changes of milk proteins and milk protein stabilized oil-in-water emulsions has been advanced for the last decade. Most of the studies have emphasized on the understanding of how milk-protein-stabilized droplets and the non-adsorbed proteins determine the physicochemical and rheological properties of protein-concentrated dairy colloids. The physical stability of concentrated protein-stabilized emulsions (i.e., against creaming or phase separation/gelation after heat treatment) can be modulated by carefully controlling the colloidal properties of the protein-stabilized droplets and the non-adsorbed proteins in the aqueous phase. This article focusses on the review of the physical stability of concentrated milk protein-stabilized oil-in-water emulsions as influenced by physicochemical factors, interparticle interactions (i.e., protein–protein, and droplet–droplet interactions) and processing conditions. Emphasis has been given to the recent advances in the formation, structure and physical stability of oil-in-water emulsions prepared with all types of milk proteins, reviewing in particular the impact of pre- and post-homogenization heat treatments. In addition, the importance of common components found in the continuous phase of heat-treated nutritional emulsions that can promote aggregation (polymers, sugars, minerals) will be highlighted. Finally, the routes of manipulating the steric stabilization of these emulsions to control heat-induced aggregation—through protein–surfactant, protein–protein, protein–polysaccharide interactions and through the incorporation of protein based colloidal particles—are reviewed.  相似文献   

11.
The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.  相似文献   

12.
The crystal growth of dense and almost monodisperse colloids has been investigated during recent years, but less is known about the melting behavior. The current study thus focuses on this topic. Monodisperse hard spheres were found to crystallize for certain concentrations (49-58 vol %), after sufficiently long times. The characteristics of the crystal growth change when the colloidal particles are polydisperse. Finally, when the size distribution function of the particles is broad enough, the crystallization no longer took place. Dense oil-in-water emulsions with polydispersities of around 10% were successfully produced, and in a first approximation, these emulsions behaved like hard spheres. The polydispersity of the emulsions was sufficiently high to avoid crystallization in equilibrium but low enough to induce a disorder-to-order transition under shear. The formed crystals started to melt once the shear was discontinued. The melting behavior of these "oil droplet crystals" was investigated by means of time-resolved static light scattering experiments, and it was found that crystallization could be induced in a concentration regime between 46 and approximately 74 vol %. The melting behavior of these crystals depended strongly on the concentration. The typical melting times ranged from a few seconds to several hours or days when the concentration was increased. It was speculated that this phenomenon could be explained by the strong dependence of the mobility of the oil droplets on the volume fraction, as verified by dynamic light scattering experiments on oil-in-water emulsions in a similar concentration regime.  相似文献   

13.
In this study the potential ability of food-grade particles (at the droplet interface) to enhance the oxidative stability was investigated. Sunflower oil-in-water emulsions (20%), stabilised solely by food-grade particles (Microcrystalline cellulose (MCC) and modified starch (MS)), were produced under different processing conditions and their physicochemical properties were studied over time. Data on droplet size, surface charge, creaming index and oxidative stability were obtained. Increasing the food-grade particle concentration from 0.1% to 2.5% was found to decrease droplet size, enhance the physical stability of emulsions and reduce the lipid oxidation rate due to the formation of a thicker interfacial layer around the oil droplets. It was further shown that, MCC particles were able to reduce the lipid oxidation rate more effectively than MS particles. This was attributed to their ability to scavenge free radicals, through their negative charge, and form thicker interfacial layers around oil droplets due to the particles size differences. The present study demonstrates that the manipulation of emulsions' interfacial microstructure, based on the formation of a thick interface around the oil droplets by food-grade particles (Pickering emulsions), is an effective approach to slow down lipid oxidation.  相似文献   

14.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

15.
The influence of the nature of the interfacial membrane on the kinetics of droplet growth in hydrocarbon oil-in-water emulsions was investigated. Droplet growth rates were determined by measuring changes in the droplet size distribution of 1 wt % n-tetradecane or n-octadecane oil-in-water emulsions using laser diffraction. The interfacial properties of the droplets were manipulated by coating them with either an SDS layer or with an SDS-chitosan layer using an electrostatic deposition method. The emulsion containing SDS-coated octadecane droplets did not exhibit droplet growth during storage for 400 h, which showed that it was stable to Ostwald ripening because of this oils extremely low water-solubility. The emulsion containing SDS-coated n-tetradecane droplets showed a considerable increase in mean droplet size with time, which was attributed to Ostwald ripening associated with this oils appreciable water-solubility. On the other hand, an emulsion containing SDS-chitosan coated n-tetradecane droplets was stable to droplet growth, which was attributed to the ability of the interfacial membrane to resist deformation because of its elastic modulus and thickness. This study shows that the stability of emulsion droplets to Ostwald ripening can be improved by using an electrostatic deposition method to form thick elastic membranes around the droplets.  相似文献   

16.
Charge-stabilized dispersions of inorganic colloids are shown to induce spontaneous emulsification of hydrophobic (TPM) molecules to stable oil-in-water emulsions, with monodisperse, mesoscopic oil droplet diameters in the range of 30-150 nm, irrespective of the polydispersity of the starting dispersions. The results for cobalt ferrite particles and commercial silica sols extend our first study (Sacanna, S.; Kegel, W. K.; Philipse, A. Phys. Rev. Lett. 2007, 98, 158301) on spontaneous emulsification induced by charged magnetite colloids and show that this type of self-assembly is quite generic with respect to the composition of the nanoparticles adsorbing at the oil-water interface. Moreover, we provide additional experimental evidence for the thermodynamic stability of these mesoemulsions, including spontaneous oil dispersal imaged by confocal microscopy and monitored in situ by time-resolved dynamic light scattering. We discuss the possibility that thermodynamic stability of the emulsions is provided by the negative tension of the three-phase line between oil, water, and adsorbed colloids.  相似文献   

17.
张源  梁启富  张小兵  刘峰 《应用化学》2012,29(1):106-112
以辛烯基琥珀酸淀粉钠和油酸甲酯分别为替代乳化剂和溶剂,采用浓缩乳化法制备了高度稳定的2.5%高效氯氟氰菊酯水乳剂,通过测定乳液油滴粒径分布,结合乳液外观研究了乳化方法、预处理液中辛烯基琥珀酸淀粉钠质量分数、转速和剪切时间等工艺条件对乳液稳定性的影响.研究结果表明,辛烯基琥珀酸淀粉钠对油酸甲酯具有较好乳化效果,以其为乳化剂可制备高度稳定的2.5%高效氯氟氰菊酯水乳剂,油滴平均粒径在1.2 μm左右,且加速试验[即(54±2)℃密封14 d]和常温储存6个月后平均粒径仅增长了0.1~0.3μm,外观无变化;采用浓缩乳化法且预处理液中辛烯基琥珀酸淀粉钠质量分数在15%~25%时乳液稳定性较好,提高转速可降低油滴平均粒径,但对乳液均一性无显著影响,延长剪切时间对油滴平均粒径影响不大,但有利于提高乳液均一性;辛烯基琥珀酸淀粉钠为乳化剂制备的高效氯氟氰菊酯水乳剂稳定性优于常规水乳剂.  相似文献   

18.
Straight-through microchannel (MC) emulsification is a novel technique for formulating monodisperse emulsions using an array of micrometer-sized channels vertical to the surface of a silicon plate (a straight-through MC). We studied the effects of the type and physical properties of the dispersed oil phase and of the surfactant concentration on droplet formation from a straight-through MC by experiments and computational fluid dynamics (CFD) simulations. Monodisperse oil-in-water emulsions with coefficients of variation below 4% were formulated from an oblong straight-through MC using silicone oils, tetradecane, medium-chain triglyceride, soybean oil, and liquid paraffin as the oil phase. At oil viscosities (eta(d)) lower than a threshold value of 100 mPa s, the values of the resultant droplet diameter (d(ex)) gradually decreased with increasing eta(d), whereas they were not affected by the surfactant concentration. Conversely, at eta(d) higher than the threshold value, the d(ex) values significantly increased with increasing eta(d), and they were affected by the surfactant concentration. An analysis on the basis of droplet formation time and interfacial tension clarified that the trends in d(ex) at eta(d) above the threshold value would be caused by the significant decrease in the dynamic interfacial tension during droplet formation. We thus discovered that the dynamic interfacial tension is also a parameter affecting the d(ex) along with eta(d) in straight-through MC emulsification. CFD simulations using a three-dimensional (3D) model including a straight-through MC confirmed successful formation of micrometer-sized droplets for the above-mentioned oils. The experimental and CFD results for the resultant droplet size were compared using the dimensionless droplet diameter (d, droplet diameter/channel equivalent diameter). The d(CFD) values agreed well with the d(ex) values at eta(d) below the threshold value of 100 mPa s for all the experiment systems and at eta(d) above the threshold value for the experiment systems that did not contain a surfactant.  相似文献   

19.
Solid-stabilized emulsions are obtained by shearing a mixture of oil, water, and solid colloidal particles. In this article, we present a large variety of materials, resulting from a limited coalescence process. Direct (o/w), inverse (w/o), and multiple (w/o/w) emulsions that are surfactant-free and monodisperse were produced in a very wide droplet size range, from micrometers to centimeters. These materials exhibit original properties compared with surfactant-stabilized emulsions: outstanding stability with respect to coalescence and unusual rheological behavior. For such systems, the elastic storage modulus G' is not controlled by interfacial tension but by the interfacial elasticity resulting from the strong adhesion between the solid particles adsorbed at the oil-water interface. Due to the wide accessible droplet size range, concentrated emulsions can be extremely fluid while emulsions with low droplet volume fraction can behave as solids.  相似文献   

20.
Experimental investigations on the Shirasu-porous-glass (SPG)-membrane emulsification processes for preparing monodisperse core-shell microcapsules with porous membranes were carried out systematically. The results showed that, to get monodisperse oil-in-water (O/W) emulsions by SPG membrane emulsification, it was more important to choose an anionic surfactant than to consider hydrophile-lipophile balance (HLB) matching. Increasing the viscosity of either the disperse phase or the continuous phase or decreasing the solubility of the disperse phase in the continuous phase could improve both the monodispersity and the stability of emulsions. With increasing monomer concentration inside the disperse phase, the monodispersity of emulsions became slightly worse and the mean diameter of emulsions gradually became smaller. Monodisperse monomer-containing emulsions were obtained when the SPG membrane pore size was larger than 1.0 micro m, and from these emulsions satisfactory monodisperse core-shell microcapsules with a porous membrane were prepared. On the other hand, when the SPG membrane pore size was smaller than 1.0 mciro m, no monodisperse emulsions were obtained because of the formation and chokage of solid monomer crystals in the pores or at the end of the pores of the SPG membrane. This was due to the remarkable solvation and diffusion of the solvent in water. With increasing the emulsification time the average emulsion diameter generally decreased, and the monodispersity of the emulsions gradually became worse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号