首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, solvents effects on the structure of collagen have been examined by circular dichroism and their interfacial tension at glass/liquid and Teflon/liquid. Changes in the conformations of the protein have been analyzed after equilibration with aqueous solutions of monohydric and polyhydric alcohols like methanol, ethanol, n-propanol, propane-2-diol and glycerol. The results from viscosity and Circular dichroism (CD) spectra suggest a clear distinction in the structural changes for collagen with monohydric alcohols as against polyhydric ones. The surface tension and interfacial tension at glass (high surface energy, HFSE) and Teflon (Low surface energy, LSFE) reflect similar differences between the monohydric and polyhydric alcohols. Studies on the interfacial energy of the adsorbed protein at glass/solution interface compared to that of Teflon/solution interface show that the water structure near glass gets perturbed leading to an increase in the average free energy of the bulk water phase and a reduction in hydrophobic effect near the glass. The results suggest that the different solvents alter the hydrophobic effect on the hydrated protein to different extent and thus influence folding equilibrium of the protein without directly interacting with it. Polyhydric alcohols seem to favor the native collagen structure while monohydric alcohols enhance it.  相似文献   

2.
Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular‐level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two‐dimensional heterodyne‐detected vibrational sum frequency generation (2D HD‐VSFG) study of the OH stretch of HOD at charged lipid interfaces, which shows that the hydrogen bond dynamics of interfacial water differ drastically, depending on the lipids. The data indicate that the spectral diffusion of the OH stretch at a positively charged lipid interface is dominated by the ultrafast (<~100 fs) component, followed by the minor sub‐picosecond slow dynamics, while the dynamics at a negatively charged lipid interface exhibit sub‐picosecond dynamics almost exclusively, implying that fast hydrogen bond fluctuation is prohibited. These results reveal that the ultrafast hydrogen bond dynamics at the positively charged lipid–water interface are attributable to the bulk‐like property of interfacial water, whereas the slow dynamics at the negatively charged lipid interface are due to bound water, which is hydrogen‐bonded to the hydrophilic head group.  相似文献   

3.
Interaction of α-Synuclein (αS) with biological lipids is crucial for the onset of its fibrillation at the cell membrane/water interface. Probed herein is the interaction of αS with membrane-mimicking lipid monolayer/water interfaces. The results depict that αS interacts negligibly with zwitterionic lipids, but strongly affects the pristine air/water and charged lipid/water interfaces by perturbing the structure and orientation of the interfacial water. The net negative αS (−9 in bulk water; pH 7.4) reorients the water as hydrogen-up (H-up) at the air/water interface, and electrostatically interacts with positively charged lipids, making the interface nearly net neutral. αS also interacts with negatively charged lipids: the net H-up orientation of the interfacial water decreases at the anionic lipid/water interface, revealing a domain-specific interaction of net negative αS with the negatively charged lipids at the membrane surface.  相似文献   

4.
The solubilization and phase equilibria of w/o microemulsions have been shown to be dependent on two phenomenological parameters, namely the spontaneous curvature and elasticity of the interfacial film, when interfacial tension is very low. The spontaneous curvature of an interface is basically determined by the geometric packing of surfactant and cosurfactant molecules at the interface, whereas the interfacial elasticity is related to the energy required to bend the interface. The droplet size and solubilization of microemulsions is mainly determined by the radius of spontaneous curvature, and is further influenced by interfacial elasticity and interdroplet interactions. A w/o microemulsion with a highly curved and relatively rigid interfacial film can exist in equilibrium with excess water at the solubilization limit due to the interfacial bending stress. Increasing the natural radius and fluidity of the interface can increase the droplet size and hence the solubilization in the microemulsion. On the other hand, a w/o microemulsion with a highly fluid interfacial film can exist in equilibrium with an excess oil phase containing a low density of microemulsion droplets due to attractive interdroplet interaction. Increasing the interfacial rigidity and decreasing the natural radius in this case can increase water solubilization in the microemulsion by retarding the phase separation process. Thus, a maximum water solubilization in a w/o microemulsion can be obtained by minimizing both the interfacial bending stress of rigid interfaces and the attractive interdroplet interaction of fluid interfaces at an optimal interfacial curvature and elasticity. The study of phase equilibria of microemulsions can serve as a simple method to evaluate the property of the interface and provide phenomenological guidance for the formulation of microemulsions with maximum solubilization capacity.  相似文献   

5.
A method for the direct simulation of the surface tension is examined. The technique is based on the thermodynamic route to the interfacial tension and makes use of the expanded ensemble simulation method for the calculation of the free energy difference between two inhomogeneous systems with the same number of particles, temperature, and volume, but different interfacial area. The method is completely general and suitable for systems with either continuous or discontinuous interactions. The adequacy of the expanded ensemble method is assessed by computing the interfacial tension of the planar vapor-liquid interface of Lennard-Jones, Lennard-Jones dimers, Gay-Berne, and square-well model fluids; in the latter, the interactions are discontinuous and the present method does not exhibit the asymmetry of other related methods, such as the test area. The expanded ensemble simulation results are compared with simulation data obtained from other techniques (mechanical and test area) with overall good agreement.  相似文献   

6.
葛宋  陈民* 《物理化学学报》2012,28(12):2939-2943
采用非平衡分子动力学方法模拟了外电场及固体表面电荷对水与固体间界面热阻的影响. 结果表明,外加电场平行于界面时, 其对界面热阻几乎没有影响, 而垂直于界面时, 界面热阻将随着电场强度的增大而减小. 壁面带正电荷或负电荷都将使得界面热阻减小. 界面热阻与表面电荷密度及电场强度均满足二次函数关系. 模拟结果表明施加外电场和表面电荷是控制液固界面热阻的有效方法.  相似文献   

7.
We report the X-ray and neutron reflectometry measurements of the structural changes caused by chemical denaturation of a surface excess of the bovine milk protein, beta-lactoglobulin. The thickness of the diffuse protein surface layer was used as an order parameter as there was no corresponding increase in the surface excess as a function of guanidinium chloride (G.HCl) concentration. A thermodynamic analysis performed gave the interfacial free energy of unfolding in the absence of a denaturant (DeltaG(0)). This energy, lower than the free energy of unfolding bulk solution, shows that the air-water interface has a destabilizing effect on protein structure up to 50 kJ mol(-1).  相似文献   

8.
A knowledge of the structure of the double layer is essential in the investigation of reactions at an inierface between two dissimilar media. This aspect is briefly presented in respect to charge separation and potential distribution in the interfacial region. The types of reactions that can occur at solid-solution interfaces (electron transfer, electrosorption, and electro-phoretic deposition) are discussed. The electrokinetic methods for determination of surface charge characteristics of insulator materials in electrodes are reviewed. Thrombosis on the blood vessel wall and on prosthetic materials is an interfacial chemical reaction. The evidence for an electrochemical mechanism of thrombosis on conducting materials is outlined. Under normal conditions, the blood vessel wall is negatively charged. Injury or atherosclerosis makes it less negatively or even positively charged. With decrease of pH, there is an increase in the surface charge density of the blood vessel wall with an isoelectric point at a pH of about 4.5. Materials treated chemically so as to introduce negatively charged groups (sulfonate, carboxylate, heparinized, anionic ioplex) tend to be antithrombogenic while positively charged surfaces (cationic Ioplex, quarternary ammonium group) are thrombogenic. A useful criterion for antithrombogenic polymer materials is that their surfaces must have a uniform negative charge.  相似文献   

9.
Sum-frequency vibrational spectroscopy, with the help of surface pressure-area (π-A) isotherm, was used to study lipid Langmuir monolayers composed of molecules with positively and negatively charged headgroups as well as a 1:1 neutral mixture of the two. The spectral profiles of the CH(x) stretch vibrations are similar for all monolayers in the liquid-condensed (LC) phase. They suggest a monolayer structure of closely packed alkyl chains that are nearly all-trans and well oriented along the surface normal. In the liquid-expanded (LE) phase, the spectra of all monolayers appear characteristic of loosely packed chains with significant gauche defects. The OH stretch spectra of interfacial water for both positively and negatively charged monolayers are significantly enhanced in comparison with a neutral water interface, but the phase measurement of SFVS indicates that OH in the two cases points toward the bulk and the interface, respectively. The enhancement results mainly from surface-field-induced polar ordering of interfacial water molecules. For a charge-neutral monolayer composed of an equal number of positively and negatively charged lipid molecules, no such enhancement is observed. This mixed monolayer exhibits a wide range of LC/LE coexistence region extended to very low surface pressure and its CH(x) spectral profile in the coexistence region resembles that of the LC phase. This result suggests that in the LC/LE coexistence region, the mixed monolayer consists of coexisting LC and LE patches in which oppositely charged lipid molecules are homogeneously mixed and dispersed.  相似文献   

10.
Yu LS  Xu XQ  Huang L  Ling JM  Chen GN 《Electrophoresis》2008,29(3):726-733
A selective and sensitive method of microemulsion EKC (MEEKC) with electrochemical detection (ED) was developed for separation and determination of 14 flavonoids. In order to obtain the better stability for the studied flavonoids, oil (ethyl acetate) with low interfacial surface tension was employed as organic solvent. A running buffer composed of 0.9% (w/v, 30 mM) SDS, 0.9% (w/v, 21 mM) sodium cholate (SC), 0.9% (w/v, 121 mM) butan-1-ol, 0.6% (w/v, 68 mM) ethyl acetate, and 98.2% v/v 10 mM Na(2)B(4)O(7)-20 mM H(3)BO(3) buffer (pH 7.5) was applied for the separation of flavonoids. Under the optimum conditions, the relationship between peak currents and analyte concentrations was linear over about 1.3 and 1.7 orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.5 microg/mL for all analytes. This method was applied for the determination of flavonoids in real samples with simple extraction procedures, and the assay results were satisfactory.  相似文献   

11.
In this work, we present results from molecular dynamics simulations on the single-molecule relaxation of water within reverse micelles (RMs) of different sizes formed by the surfactant aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulfosuccinate) in isooctane. Results are presented for RM water content w(0) = [H(2)O]/[AOT] in the range from 2.0 to 7.5. We show that translational diffusion of water within the RM can, to a good approximation, be decoupled from the translation of the RM through the isooctane solvent. Water translational mobility within the RM is restricted by the water pool dimensions, and thus, the water mean-squared displacements (MSDs) level off in time. Comparison with models of diffusion in confined geometries shows that a version of the Gaussian confinement model with a biexponential decay of correlations provides a good fit to the MSDs, while a model of free diffusion within a sphere agrees less well with simulation results. We find that the local diffusivity is considerably reduced in the interfacial region, especially as w(0) decreases. Molecular orientational relaxation is monitored by examining the behavior of OH and dipole vectors. For both vectors, orientational relaxation slows down close to the interface and as w(0) decreases. For the OH vector, reorientation is strongly affected by the presence of charged species at the RM interface and these effects are especially pronounced for water molecules hydrogen-bonded to surfactant sites that serve as hydrogen-bond acceptors. For the dipole vector, orientational relaxation near the interface slows down more than that for the OH vector due mainly to the influence of ion-dipole interactions with the sodium counterions. We investigate water OH and dipole reorientation mechanisms by studying the w(0) and interfacial shell dependence of orientational time correlations for different Legendre polynomial orders.  相似文献   

12.
The CE method employing an indirect UV detection for the enantioseparation of 1,3‐dimethylamylamine (DMAA), widely used in various preworkout and dietary supplements labeled as a constituent of geranium extract has been developed. The dual‐selector system consisting of negatively charged sulfated α‐CD (1.1% w/v) and sulfated β‐CD (0.2% w/v) in 5 mM phosphate/Tris buffer (pH 3.0) containing the addition of 10 mM benzyltriethylammonium chloride (BTEAC) as the chromophoric additive was used for the enantiomeric separation of DMAA stereoisomers with the LODs in the range of 7.82–9.24 μg/mL. The method was partly validated and applied for the determination of the stereoisomeric composition of DMAA in commercial dietary supplements to verify the potential natural origin of DMAA.  相似文献   

13.
This work reports the estimation of isoelectric points (pIs) of adsorbed amino acids and proteins on solid surfaces in the pH range between 3.5-11.0 from a measurement of solid/liquid interfacial energy. The values thus obtained are compared with the pIs determined in solution phase by other methods. Both glass and Teflon have been chosen as model solid surfaces. Close agreement between the reference pI values, obtained by the capillary isoelectric focusing and those obtained at solid/liquid interface is observed within an average difference of 0.04-0.08 pH unit when the pIs are above the pI of glass. For systems whose pIs are far away from that of glass (either in the acidic or highly alkaline range), a large shift in the isoelectric point is observed. In case of Teflon the pIs are closer to the reported values than at glass/liquid interface. This could be due to the fact that Teflon being a hydrophobic surface, its surface is dominated by dispersive forces, which may not be seriously affected by pH changes. The shift in the values at solid/liquid interface compared to that in solution have been examined using an 'image charge approach.'  相似文献   

14.
15.
We have calculated the interfacial free energy for the hard-sphere system, as a function of crystal interface orientation, using a method that examines the fluctuations in the height of the interface during molecular dynamics simulations. The approach is particularly sensitive for the anisotropy of the interfacial free energy. We find an average interfacial free energy of gamma=0.56+/-0.02k(B)Tsigma(-2). This value is lower than earlier results based upon direct calculations of the free energy [R. L. Davidchack and B. B. Laird, Phys. Rev. Lett. 85, 4751 (2000)]. However, both the average value and the anisotropy agree with the recent values obtained by extrapolation from direct calculations for a series of the inverse-power potentials [R. L. Davidchack and B. B. Laird, Phys. Rev. Lett. 94, 086102 (2005)].  相似文献   

16.
The effect of polyethylene glycol 400 (PEG) dissolved at various concentrations (0-40% v/v) in water, on the interfacial transport of methyl nicotinate across an aqueous-isopropyl myristate interface was investigated with a rotating diffusion cell. At four temperatures studied (20-37 °C), the presence of PEG decreased the rate of solute transfer both into and out of the organic phase in a concentration-dependent fashion. The bulk partition coefficient of the solute (organic/aqueous) increased with increasing PEG in the aqueous phase. Analysis of the temperature dependence of the interfacial transfer kinetics allowed thermodynamic activation energy parameters for the phase transport process to be determined. Although the free energy of activation (ΔG(≠)) for transfer was not affected by PEG, the relative enthalpic and entropic contributions were dramatically altered. At PEG concentrations of 10-40% v/v the enthalpic portion of ΔG(≠) was decreased by about a factor of two, while the entropic contribution (which is large and positively favorable in the absence of PEG) was reduced considerable such that it was totally eliminated at higher PEG levels. These observations suggest novel and direct experimental evidence for the concept that high PEG concentrations substantially alter water structure at an aqueous solution-organic liquid biomembrane model interface. The results support the hypothesis that the critically important function of PEG in inducing cell-cell and liposome-liposome fusion is to remove the hydration layer that impedes the close apposition of converging phospholipid bilayers.  相似文献   

17.
《Soft Materials》2013,11(1):63-74
In lyotropic systems, the sponge and the lamellar phases possess the same local structure: a membrane made of a bilayer of surfactants. In the quasiternary lyotropic system CPCl/brine/hexanol, the bilayer is continuous through the interface between the lamellar and the sponge phases. A model based on this phenomenon has predicted a very low value of the interfacial free energy. The study of hydrodynamic relaxation time of distorted spherical lamellar droplets gives an estimation of the interfacial tension value. Results confirm the validity of the model and the dependence on membrane volume fraction is explained by a simple scaling law.  相似文献   

18.
表面活性剂在氧化物表面上的吸附,因其在浮选中的重要作用而被广泛研究。但迄今为上的工作多是关于表面活性离子在电性相反的氧化物表面上,例如阳离子表面活性剂在带负电的氧化物表面上的吸附,而对电性相同的表面活性离子的吸附则很少涉及,虽然许多实际问题中遇到的是后一种情形。本工作研究了烷基硫酸钠在带负电的TiO2表面上的吸附,根据吸附与电泳的实验结果计算了吸附自由能,并提出了可能的吸附机理。  相似文献   

19.
The formation of thin wetting films on silica surface from aqueous solution of (a) tetradecyltrimetilammonium bromide (C14TAB) and (b) surfactant mixture of the cationic C14TAB with the anionic sodium alkyl- (straight chain C12–, C14– and C16–) sulfonates, was studied using the microscopic thin wetting film method developed by Platikanov. Film lifetimes, three-phase contact (TPC) expansion rates, receding contact angles and surface tension were measured. It was found that the mixed surfactants caused lower contact angles, lower rates of the thin aqueous film rupture and longer film lifetimes, as compared to the pure C14TAB. This behavior was explained by the strong initial adsorption of interfacial complexes from the mixed surfactant system at the air/solution interface, followed by adsorption at the silica interface. The formation of the interfacial complexes at the air/solution interface was proved by means of the surface tension data. It was also shown, that the chain length compatibility between the anionic and cationic surfactants controls the strength of the interfacial complex and causes synergistic lowering in the surface tension. The film rupture mechanism was explained by the heterocoagulation mechanism between the positively charged air/solution interface and the solution/silica interface, which remained negatively charged.  相似文献   

20.
A fast and accurate method to compute the total solvation free energies of proteins as a function of pH is presented. The method makes use of a combination of approaches, some of which have already appeared in the literature; (i) the Poisson equation is solved with an optimized fast adaptive multigrid boundary element (FAMBE) method; (ii) the electrostatic free energies of the ionizable sites are calculated for their neutral and charged states by using a detailed model of atomic charges; (iii) a set of optimal atomic radii is used to define a precise dielectric surface interface; (iv) a multilevel adaptive tessellation of this dielectric surface interface is achieved by using multisized boundary elements; and (v) 1:1 salt effects are included. The equilibrium proton binding/release is calculated with the Tanford-Schellman integral if the proteins contain more than approximately 20-25 ionizable groups; for a smaller number of ionizable groups, the ionization partition function is calculated directly. The FAMBE method is tested as a function of pH (FAMBE-pH) with three proteins, namely, bovine pancreatic trypsin inhibitor (BPTI), hen egg white lysozyme (HEWL), and bovine pancreatic ribonuclease A (RNaseA). The results are (a) the FAMBE-pH method reproduces the observed pK a's of the ionizable groups of these proteins within an average absolute value of 0.4 p K units and a maximum error of 1.2 p K units and (b) comparison of the calculated total pH-dependent solvation free energy for BPTI, between the exact calculation of the ionization partition function and the Tanford-Schellman integral method, shows agreement within 1.2 kcal/mol. These results indicate that calculation of total solvation free energies with the FAMBE-pH method can provide an accurate prediction of protein conformational stability at a given fixed pH and, if coupled with molecular mechanics or molecular dynamics methods, can also be used for more realistic studies of protein folding, unfolding, and dynamics, as a function of pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号