首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Particles-stabilized foams have received more attention in recent years due to their specific characteristics and advantages in contrast to conventional foams which were stabilized with surfactants. However, the rheology of particles-stabilized foam in consolidated cores was rarely studied. To investigate the feasibility of the particles-stabilized foam application in enhanced oil recovery, the blocking ability and flowing characteristics of foam stabilized with clay particles were investigated by using experimental cores. To do this, the foam resistance factor was studied as an index in this article. The effects of foam quality (gas velocity divided by total velocity), injection rate of foam, and the permeability of cores on the blocking ability of foams were investigated. Results showed that the blocking ability reached the peak value at the foam quality of 0.74. This indicated effective blocking ability as conventional foams performed in porous media. Moreover, the foams block the channels more effectively in high permeability cores, compared with low permeability ones. Finally, foams displayed shear-thinning property in porous media as injection rate increased.   相似文献   

2.
Aqueous foams of oleic acid/oleate solution were found to be pH-responsive with pH changes. Detailed characterization of the aqueous foams of oleic acid/oleate solution was conducted with respect to their stability, structure, and pH response. The pH values required for foam circulation were studied through pH adjustment. The foaming and defoaming activities of oleic acid/oleate solution were explained by microscopic analysis and oil defoaming mechanisms. Because of the reversibility of oleic acid losing or receiving protons, the foaming and defoaming cycles could be readily repeated many times.   相似文献   

3.
This paper reports a study on the stability of foams generated from the aqueous solutions of the zwitterionic surfactant, N-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, in presence of NaCl, CaCl2 and AlCl3. The effect of oil (i.e. n-hexane) on foam was also studied. The surface and interfacial tensions were measured. These tensions and the CMC decreased upon salt addition, signifying an increased adsorption of the surfactant molecules at the interface. The quantity of salt required for reducing the surface tension and CMC was in the sequence: NaCl > CaCl2 > AlCl3. The salts had a pronounced effect on the foaming characteristics, i.e. they reduced the initial foam volume. The effectiveness of salts in reducing the foam stability followed the sequence: AlCl3 > CaCl2 > NaCl. However, the foam collapse rate was reduced in the presence of salt. The presence of oil decreased the foam volume and reduced its stability. The entering, bridging, and spreading coefficients were calculated, which explained the stability of foams in presence of oil.  相似文献   

4.
作为典型的软物质,水基泡沫因具有较小的粒径、较大的比表面积和良好的流动性而广泛应用于洗涤剂、化妆品、食品工程、油气开采等领域。在实际应用中,泡沫的稳定性起着制约性作用。近年来,在环境因素刺激下,能在稳定和非稳定状态之间转变的可控智能泡沫引起了极大关注。针对近年来智能水基泡沫的研究进展,本文综述了基于温度、磁场、光、pH和CO2响应等智能水基泡沫体系,讨论了不同类型的智能水基泡沫的形成机理及相应性能,展望了智能水基泡沫的应用前景和发展方向。  相似文献   

5.
The goal of this work was the synthesis of novel flame-retarded polyurethane rigid foam with a high percentage of castor oil phosphate flame-retarded polyol (COFPL) derived from renewable castor oil. Rigid flame-retarded polyurethane foams (PUFs) filled with expandable graphite (EG) and diethyl phosphate (TEP) were fabricated by cast molding. Castor oil phosphate flame-retarded polyol was derived by glycerolysis castor oil (GCO), H2O2, diethyl phosphate and catalyst via a three-step synthesis. Mechanical property, morphological characterization, limiting oxygen index (LOI) and thermostability analysis of PUFs were assessed by universal tester, scanning electron microscopy (SEM), oxygen index testing apparatus, cone calorimeter and thermogravimetric analysis (TGA). It has been shown that although the content of P element is only about 3%, the fire retardant incorporated in the castor oil molecule chain increased thermal stability and LOI value of polyurethane foam can reach to 24.3% without any other flame retardant. An increase in flame retardant was accompanied by an increase in EG, TEP and the cooperation of the two. Polyurethane foams synthesized from castor oil phosphate flame-retarded polyol showed higher flame retardancy than that synthesized from GCO. The EG, in addition to the castor oil phosphate, provided excellent flame retardancy. This castor oil phosphate flame-retarded polyol with diethyl phosphate as plasticizer avoided foam destroy by EG, thus improving the mechanical properties. The flame retardancy determined with two different flame-retarded systems COFPL/EG and EG/COFPL/TEP flame-retarded systems revealed increased flame retardancy in polyurethane foams, indicating EG/COFPL or EG/COFPL/TEP systems have a synergistic effect as a common flame retardant in castor oil-based PUFs. This EG/COFPL PUF exhibited a large reduction of peak of heat release rate (PHRR) compared to EG/GCO PUF. The SEM results showed that the incorporation of COFPL and EG allowed the formation of a cohesive and dense char layer, which inhibited the transfer of heat and combustible gas and thus increased the thermal stability of PUF. The enhancement in flame retardancy will expand the application range of COFPL-based polyurethane foam materials.  相似文献   

6.
Nonaqueous foams stabilized by lamellar liquid crystal (L alpha) dispersion in diglycerol monolaurate (designated as C12G2)/olive oil systems are presented. Foamability and foam stability depending on composition and the effects of added water on the nonaqueous foaming behavior were systematically studied. It was found that the foamability increases with increasing C12G2 concentration from 1 to 3 wt% and then decreases with further increasing concentration, but the foam stability increases continuously with concentration. Depending on compositions, foams are stable for a few minutes to several hours. Foams produced by 10 wt% C12G2/olive oil system are stable for more than 6 h. In the study of effects of added water on the foaming properties of 5 wt% C12G2/olive oil system, it was found that the foamability and foam stability of 5 wt% C12G2/olive oil decreases upon addition of 1 wt% water, but with further increasing water, both the foamability and foam stability increase. Foams with 10% water added system are stable for approximately 4 h. Phase behavior study of the C12G2 in olive oil has shown the dispersion of L alpha particles in the dilute regions at 25 degrees C. Thus, stable foams in the C12G2/olive oil system can be attributed to L alpha particle, which adsorb at the gas-liquid interface as confirmed by surface tension measurements and optical microscopy. Laser diffraction particle size analyzer has shown that the average particle diameter decreases with increasing the C12G2 concentration and, hence, the foams are more stable at higher surfactant concentration. Judging from foaming test, optical micrographs, and particle size, it can be concluded that stable nonaqueous foams in the studied systems are mainly caused by the dispersion of L alpha particles and depending on the particle size the foam stability largely differs.  相似文献   

7.
Several new foaming agent formulations (surfactants and polymers) in the presence of multi-walled carbon nanotube (MWCNT) were developed in 3% salinity (NaCl, 2.4?wt%, CaCl2, 0.6?wt%). The dispersion stability of the MWCNT and the viscosity of the solutions were examined as a prerequisite for reservoir applications. Foam was generated in situ and one-dimensional flow-through tests were performed by co-injecting air and foaming solution either in the presence of MWCNT or at particle-free condition. The pressure drop (Δp) across the sand-pack and the nanoparticles breakthrough were closely monitored. The fluid injection rate, gas fraction, and the effect of MWCNT on foams in porous media were investigated.

Our results reveal that foams stabilized by the selected nanoparticles are capable of generating stronger foams leading to higher apparent Δp. The Δp profile varies with gas fraction, which largely affects the foam texture and quality. Also, the viscosity of foaming agent solutions influences Δp values. Adding MWCNT to the foaming agent solutions appears beneficial to the flooding as surfactants adsorption onto nanoparticle surfaces, which facilitates surfactants partitioning to the G/L interface.

Addition of nanoparticles in the developed foam formulations leads to the formation of high-quality stronger foams in porous media, which could potentially improve the sweep efficiency and increase the oil recovery.  相似文献   

8.
The foam stability (drainage half-life) of α-olefin sulfonate (AOS) with partially hydrolyzed polyacrylamide (HPAM) or xanthan gum (XG) solution was evaluated by the Warring Blender method. With the increase of polymer (HPAM or XG) concentration, foam stability of the surfactant–polymer complexes increased, and the drainage half-life of AOS-XG foam was higher than that of AOS-HPAM foam at the same polymer and surfactant concentration. With the addition of polymer (HPAM or XG), the viscoelasticity of bulk solution and the liquid film were enhanced. The viscoelasticity of AOS-XG bulk solution and liquid film were both higher than that of AOS-HPAM counterparts.   相似文献   

9.
This study was conducted in order to identify the pore-level mechanisms controlling the nanoparticles–surfactant foams flow process and residual oil mobilization in etched glass micro-models. The dominant mechanism of foam propagation and residual oil mobilization in water-wet system was identified as lamellae division and emulsification of oil, respectively. There was inter-bubble trapping of oil and water, lamellae detaching and collapsing of SDS-foam in the presence of oil in water-wet system and in oil-wet system. The dominant mechanisms of nanoparticles–surfactant foam flow and residual oil mobilization in oil-wet system were the generation of pore spanning continuous gas foam. The identified mechanisms were independent of pore geometry. The SiO2-SDS and Al2O3-SDS foams propagate successfully in water-wet and oil-wet systems; foam coalescence was prevented during film stretching due to the adsorption and accumulation of the nanoparticles at the gas–liquid interface of the foam, which increased the films’ interfacial viscoelasticity.  相似文献   

10.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

11.
The triple-phase foam has been widely used in oil fire extinguishing, and its two key parameters for application are the foaming ability and stability. We present a comprehensive study on the foam expansion ratio (FER) and drainage time, where factors such as the foam morphology, zeta potential of particles, foam mixing homogeneity, surfactant concentration, particle mass percentage, and specific surface area of the particle are investigated in detail. The dependence relationship curves of FER and drainage time with respect to the latter four variables are given through experiments, and optimal parameter values are selected. Moreover, the scaling laws correlating these variables are in agreement with the experimental results, and some necessary parameters are obtained by data fitting. These analyses are beneficial to better understand the foaming ability and stability mechanism of the triple-phase foam and to prepare materials of high performances for oil fire extinguishing.  相似文献   

12.
An experimental study was performed on aqueous foams stabilized by a mixture of hexadecyltrimethylammonium bromide (HTAB) and negatively-charged silica nanoparticles. The effects of the nanoparticles on the stability of foams at different HTAB concentrations were investigated. The foams were characterized by measuring their foamability and stability. Rheological behavior of the foams was also studied. Furthermore, rheology of the air–water interfaces was studied in the linear and nonlinear deformation ranges. The thickness of the monolayer at the interface was measured. The actual size of the silica nanoparticles at the air–water interface was measured by transmission electron microscopy. Based on these measurements, the interaction between the monolayers across the foam film containing HTAB and nanoparticles was investigated. Smaller silica nanoparticles (i.e. diameter less than 10?nm) adsorbed at the air–water interface whereas the larger particles remained in the sub-phase or in the bulk liquid phase. It was found that these nanoparticles strongly influenced the foaming behavior at the low HTAB concentrations (i.e. below the CMC). A Langmuir-type monolayer was formed. The presence of the nanoparticles at the air–water interface provided mechanical strength to the foam films and prevented their rupture. This hindered coalescence of the bubbles, which resulted in a stable foam.  相似文献   

13.
Considering the high cost and injection pressure of conventional foam flooding, foam flooding with low gas/liquid ratio was proposed to enhance the heavy oil recovery. A foamer containing 0.2 wt% α -olefin sulfonate, 0.1 wt% HPAM and 0.5 wt% Na2CO3 was selected for Zhuangxi heavy oil. Then the foam stability and low gas/liquid ratio foam flooding were studied via micro model and sand pack experiments. The results indicate that the foam is much more stable in heavy oil than in diesel; in flooding tests, this foamer with gas/liquid ratio of 0.2:1 increases the oil recovery by 39.8%, which is nearly 11% higher than ASP solution in terms of the same injection volume (0.3PV) and agents.  相似文献   

14.
戴乐蓉  厉锋 《应用化学》1989,6(6):79-82
泡沫体系的表面张力、粘度,表面粘度以及液晶相的存在对泡沫的稳定性皆有影响。消泡剂可改变上述性质。本文报导聚氧乙烯辛基酚(TritonX-100),十二烷基硫酸钠(SDS),油酸三乙醇胺(TEAOL)和卵磷脂等起泡剂在均相溶液及有液晶存在时产生泡沫的稳定性,观察硅油的消泡作用。  相似文献   

15.
Foam generated by sparging of aqueous solutions of the block copolymers P85 (PEO26‐PPO39‐PEO26), F88 (PEO103‐PPO40‐PEO103), F127 (PEO99‐PPO65‐PEO99), and L64 (PEO13‐PPO30‐PEO13), has been characterized by foam volume measurements. Uniform wet foam formed, which, after drainage of the major part of the liquid, transformed to polyhedral dry foam. Conductance jumps across the foam column indicated that structural changes occur at a certain liquid fraction. The dry foams of P85 were less stable than those of F88 and F127. The latter copolymers showed similar foam stability over a period of one hour. The L64 foam was very unstable. It is suggested that the stability of the dry foams is determined by the resistance to rupture of the foam films. Foam stability is discussed in relation to earlier studies on surface rheology and to the thickness of thin foam films. A general relationship for all PEOx‐PPOy‐PEOx block copolymers between the dilatational modulus and the foam stability could not be found. However, the ability to form thick adsorption layers, accompanied by steric repulsive forces across foam films, appears to be a general foam‐stabilizing factor. Surface diffusion coefficients of a fluorescent probe in single‐block copolymers foam films are also reported for a brief discussion on Gibbs‐Marangoni stabilization.  相似文献   

16.
The foam performances of 3‐dodecoxy‐2‐hydroxypropyl trimethylammonium chloride (C12TAC) have been determined in the existence of different relative amount of polymer. The experimental results show that the foaming ability of the mixture systems of the C12TAC/PEG and C12TAC/PVP is stronger than that of the surfactant solutions in the absence of polymer, and with the increase of relative amount of polymer both foaming efficiency and foam stability of the surfactant solutions are evidently enhanced. For the aqueous solution of the surfactant, effect of temperature on foaming properties has also been examined. The results show that both the foaming ability and stability of the foams of the surfactant solutions are highest (or strongest) at 30°C.  相似文献   

17.
Solution properties of aqueous film-forming foam (AFFF) formulations containing different xanthan gum contents were investigated first by varying the mass fraction of xanthan gum in the range of 0.1–0.5%. Foam properties and fire-extinguishing performance of the AFFF formulations were then evaluated. Results indicated that xanthan gum content slightly affected surface tension of foam solutions. However, xanthan gum significantly affected viscosity of AFFF concentrates. Foaming of the AFFF formulations was hardly affected by xanthan gum, but foam stability of the compounds was obviously enhanced with the addition of xanthan gum. Optimal xanthan gum content was determined as 0.3%, which resulted in the shortest 90% control time and fire extinguishment time. Burnback time of foams increased with the addition of xanthan gum because of the enhanced foam stability.  相似文献   

18.
Influence of pH of the BSA solutions on velocity of the rising bubbles, stability of foams, and properties of single foam and wetting films was studied. It was found that the solution pH affected significantly the BSA surface activity and properties of the protein adsorption layer under dynamic and static conditions. At pH close to the isoelectric point (pHIEP=4.8) the BSA showed the highest surface activity. The equilibrium microscopic foam films of thicknesses of 64–80 nm, depending on the BSA concentration, were obtained at pH=5.8. Under dynamic conditions the bubble rising velocity was reduced in a highest degree and the foam formed were most stable at the solutions pH-5.8 and 4.8. Lowering the bubble velocity shows that the BSA adsorption layer was formed, which retarded fluidity of the bubble surface. When the solution pH was significantly lower (pH=3.9) or much higher (pH=10) than the pHIEP then the BSA practically had no influence on the bubble velocity and the foam stability was drastically reduced. Moreover, the pH variations affected also the time of the three-phase contact (TPC) formation on mica surface covered by the BSA adsorption layers. These pH dependent changes in the BSA surface activity indicate that the BSA linear conformers, existing at pH far away from the pHIEP, have much higher affinity to aqueous phase resulting from higher net electrical charge present over the extended BSA molecule conformers.  相似文献   

19.
We describe the facile production of highly stable foams stabilized solely by micrometer-sized, sterically stabilized polystyrene (PS) latex particles. Such foams can survive for more than one year in the wet state and remain intact after drying. In contrast, foams stabilized with either sodium dodecyl sulfate or poly(N-vinylpyrrolidone) were destroyed after removal of the aqueous phase. Scanning electron microscopy studies reveal hexagonally close-packed arrays of PS particles within the dried foam, which suggests high colloid stability for the PS particles prior to their adsorption at the air-water interface. Localized moiré patterns are observed by optical microscopy due to the formation of well-defined latex bilayers with exquisite long-range order. Moreover, the dried foams are highly iridescent in bright transmitted light, which may offer potential applications in security inks and coatings.  相似文献   

20.
The present study focuses on the drainage property of aqueous film-forming foam stabilized by different types and concentrations of foam stabilizers. Aqueous film-forming foam (AFFF) formulation concentrates are prepared based on the main components of fluorocarbon surfactant, hydrocarbon surfactant, and organic solvents. Carboxymethylcellulose sodium (CS), xanthan gum (XG), and lauryl alcohol (LA) are selected as foam stabilizers of the AFFF. Surface tension, viscosity, and foamability tests of the AFFF solutions are conducted to evaluate the effect of foam stabilizers on the properties of AFFF solutions. Particularly, an apparatus is established based on the law of connected vessel in order to obtain the instantaneous mass of liquids drained from foams. The drainage features of the AFFFs containing different foam stabilizers are analyzed and compared with each other. The results indicate that AFFF drainage is significantly affected by the type and the concentration of foam stabilizers. The addition of CS and XG to AFFF results in a deceleration of foam drainage, while foam drainage is accelerated by the addition of LA. The variations of surface tension, viscosity, and liquid fraction of foams are the main reasons for the varying foam drainage rate. This study provides a direct connection between chemical components and fundamental properties of AFFF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号