首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超高分子量聚乙烯的研发及应用   总被引:3,自引:0,他引:3  
超高分子量聚乙烯(UHMWPE)是一种性能卓越的工程塑料,同众多的聚合材料相比,具有其它工程塑料所无法比拟的耐冲击性、耐磨损性、耐化学药品性、耐低温性、耐应力开裂性、抗粘附能力,优良的电绝缘性、自润滑性及安全卫生等性能,可以代替碳钢、不锈钢、青铜等材料广泛地应用于体育、纺织、采矿、化工、包装、建筑、机械、电气、医疗等领域。本文综述了国内超高分子量聚乙烯生产现状、需求、产品加工和应用情况,并对其以后的发展前景进行了预测。  相似文献   

2.
An amidoxime-based ultra-high molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully prepared by γ-irradiation-induced graft copolymerization of acrylonitrile (AN) and acrylic acid (AA), followed by amidoximation. The grafting of AN and AA on the UHMWPE fiber and the amidoximation of the grafted fiber were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The mechanical property of the original and modified UHMWPE fibers was compared by single-filament strength test. The adsorption property of the UHMWPE fibrous adsorbent was evaluated by adsorption test in uranyl nitrate solution and seawater. The surface of the modified UHMWPE fibers was covered by the grafting layer and became rough. The tensile strength of the amidoxime-based UHMWPE fibrous adsorbent was influenced by the absorbed dose and hydrochloric acid elution, but was independent of the grafting yield and amidoximation. The uranium adsorption amount of the amidoxime-based UHMWPE fibrous adsorbent after immersing in seawater for 42 days was 2.3 mg-U/g.  相似文献   

3.

The processability of ultrahigh molecular weight polyethylene (UHMWPE) improved by oligomer-modified calcium carbonate (CaCO3) was observed in our previous work. In order to understand the effect of oligomer-modified CaCO3 on the crystallization of UHMWPE, the non-isothermal crystallization behavior and crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3 was studied by differential scanning calorimetry in this work. Jeziorny and Mo methods were used to describe the non-isothermal crystallization kinetics of UHMWPE composites. The effect of modified filler content and cooling rate on the crystallization temperature and crystallization rate was discussed. The heterogeneous nucleation of modified CaCO3 slightly increases the crystallization temperature of UHMWPE. The crystallization enthalpy of UHMWPE composites is significantly higher than that of UHMWPE. The crystallization rate of UHMWPE composites depends on the filler contents and cooling rate.

  相似文献   

4.
改性UHMWPE纤维/乙烯基酯树脂复合材料的研究   总被引:7,自引:1,他引:6  
超高分子量聚乙烯纤维在过氧化物引发下,通过硅烷进行接枝改性。研究了改性纤维/乙烯基酯树脂复合材料的界面性能。采用层间剪切强度、扫描电镜、红外光谱(ATRIR)及浸润性测试等分析手段表征了接枝改性的效果。结果表明,经过硅烷接枝改性,改善了超高分子量聚乙烯纤维对乙烯基酯树脂的浸润性,提高了纤维与基体之间的粘结性,使复合材料的层间剪切强度大幅度提高。  相似文献   

5.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) fibers have been modified by plasma treatment to increase adhesion in high‐density polyethylene (HDPE) matrices. Results showed that surface roughness predominates for modified UHMWPE fibers, indicating that the plasma treatment favors the interaction with HDPE. Unmodified HDPE composite samples gave a lower interlaminar shear strength than did the samples that were incorporated with UHMWPE. The addition of unmodified UHMWPE fibers to the neat HDPE significantly increases interlaminar shear strengths of composites, up to 20 vol%. The oxygen concentration increased from 16.16 %to 21.99%, and the ratio of oxygen to carbon atoms increased significantly from 0.194 to 0.284 after oxygen plasma treatment for 5 minutes with a power of 300 W.  相似文献   

6.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

7.
Ultra‐high molecular weight polyethylene (UHMWPE) fibers were modified by chromic acid. The effects of surface modification were evaluated with Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electron microscope (SEM). The results showed that both the content of O‐containing functional groups and surface roughness of modified fibers increased. The polar groups on the modified fiber surface decreased the contact angles with water and ethylene glycol, as evidenced by contact angle measurement. The tensile test results showed the strength and the elongation at break of UHMWPE fibers decreased but the modulus increased after chromic acid modification. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The tribological properties and wear resistance under different action of composite materials based on of ultra-high-molecular-weight polyethylene (UHMWPE) and fillers of various types such as organomodified montmorillonite (MMT), graphite nanoplates (GNP), molybdenum disulfide, and shungite prepared via polymerization in situ are studied. According to the obtained results, the introduction of these fillers to UHMWPE in the amount of 0.4–7 wt % has almost no effect on the value of the coefficient of sliding friction on steel in the mode of dry friction. Composites with GNP, MoS2, and shungite are characterized by a significant (two- to threefold) increase in the wear resistance in the case of sliding friction on steel. The abrasive wear of composites in the case of friction on an abrasive paper is substantially affected by the type of filler, the use of MMT was the most effective for increasing the wear resistance of composites. In the case of a highspeed impact effect of water–sand suspensions all the studied composites are characterized by increased wear resistance in comparison with industrial UHMWPE at a low concentration of fillers and by an increase in the wear with the increase of the filler content.  相似文献   

9.
The possibility of heterogenization of a polymer system by using new post-metallocene catalytic systems comprising phenoxy-imine titanium halide complexes with different ligand environments modified by oxyallyl groups was studied with the aim of decreasing sticking of the reactor powders of ultra-high-molecular-weight polyethylene (UHMWPE RPs) suitable for solid-phase processing. The effective use of selfimmobilizing systems for the manufacture of UHMWPE RPs with reduced sticking to the reactor walls and the stirrer, but with somewhat reduced strength of the UHMWPE RP-based articles is shown.  相似文献   

10.
We investigated the adsorption of the cationic surfactant cetyltrimethylammonium bromide (CTAB) to zeolite from premicellar and micellar solutions, as well as some properties of the organically modified zeolite surface and the nature of its interfacial interaction with ultra-high-molecular-weight polyethylene (UHMWPE) in a UHMWPE-based polymer composite material (PCM). The formation mechanism of mono- and bimolecular adsorption layers of cetyltrimethylammonium cation and bromide anion to the clinoptilolite (Cli) surface was proposed, and the thermodynamic and kinetic characteristics of adsorption were determined. The surface texture of organically modified zeolite was studied by instrumental methods; the thermal stability limits of CTAB adsorption layers to zeolite surface and their decomposition behavior in inert and oxidizing media were established. The evaluation of the deformation and strength properties, the study of the supramolecular structure, and the calculation of the thermodynamic and kinetic parameters of the PCM crystallization process revealed that the filing with organically modified Cli increases the UHMWPE surface activity and improves their compatibility.  相似文献   

11.
The present work comparatively studied the modification effects of short carbon fiber (CF) on the mechanical properties and fretting wear behavior of ultra‐high molecular weight polyethylene (UHMWPE)/CF composites. The interactions between CFs and UHMWPE interface were also investigated in detail. The results showed that, with the increase in fiber content, the compressive modulus and hardness of the composites increased, while its impact strength decreased. It was found that filling of CF can reduce the friction and wear of UHMWPE. In addition, the UHMWPE‐based composites reinforced with nitric acid‐treated CF exhibited better mechanical properties, lower friction coefficient, and higher wear resistance than those of untreated UHMWPE/CF composites. This was attributed to the improvement of interfacial adhesion and compatibility between CF and UHMWPE matrix caused by surface chemical modification of CF. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
董澎  王柯  李军方  傅强 《高分子学报》2020,(1):117-124,I0005
利用新的单中心Ziegler-Natta(Z-N)催化剂,通过干预分子链的生长与聚集行为,可获得低缠结的超高分子量聚乙烯(UHMWPE)初生树脂.本研究利用这类低缠结UHMWPE,通过设置不同的烧结温度(Ts)来改变熔体缠结状态,并探讨了链缠结程度对烧结制品结构与性能的影响.实验结果表明TS=220℃下,UHMWPE样品发生显著的复缠,造成高缠结度;而Ts=170℃下,初始低缠结状态能够得以充分保留,从而获得了缠结度具有明显差别的不同样品.示差扫描量热法(DSC)测试表明,在Ts=170℃下,低缠结度有利于在随后等温及冷却结晶过程中生成高熔点(最高达141℃)晶体与高的结晶度(最高达65%).力学测试表明低缠结度制品的综合力学性能显著提升,其中屈服强度提高72%,拉伸断裂强度提升139%,弹性模量提升162%以及断裂伸长率提升36%,实现了同时增强增韧.这就提供了一种从调节链缠结温度实现UHMWPE烧结制品高性能化的新思路.  相似文献   

13.
In this paper, silicone‐coated intumescent flame retardants was prepared by an efficient and simple approach, aiming at enhancing the flame‐retardant efficiency and smoke suppression properties. The surface of expandable graphite (EG) was treated prior to the coverage of nonflammable silicone. The resultant silicone‐modified EG hybrid (SEG) was combined with ammonium polyphosphate (APP) and applied as a flame‐retardant and smoke‐suppressant for ultrahigh molecular weight polyethylene (UHMWPE). Compared with UHMWPE/APP/EG (with 15 wt% APP/EG), UHMWPE/APP/SEG (with 15 wt% APP/SEG) gives decrement by 18.5% in the peaks of the heat release rate, 6.33% in total heat release and 13.6% in total smoke release, whereas increment by 23% in tensile strength and 12.1% in elongation at break, respectively. It is suggested that the introduction of silicone on the surface of EG can improve the interfacial compatibility between EG and UHMWPE. Moreover, it can lead to forming more char residue and reducing the release of smoke particulates during combustion process of the composites.  相似文献   

14.
In this study, the effect of chemical crosslinking on the creep behavior of high-strength fibers, obtained by gel-spinning and subsequent hot-drawing of ultra-high molecular weight polyethylene (UHMWPE), is examined. In the first part of the paper, the general aspects of the creep behavior of these fibers are discussed. The second part deals with UHMWPE fibers that are crosslinked by means of a) chlorosulfonation and b) dicumyl peroxide treatment followed by UV irradiation. The latter technique leads to an improvement of the creep resistance of the UHMWPE fibers without affecting their high tensile strengths. In spite of the fact that the network formation is fairly high, the creep cannot be completely removed. The results indicate that the creep process in UHMWPE fibers is associated with a deformation mechanism in the crystalline regions of the fiber, which are not affected by chemical crosslinking.  相似文献   

15.
Bimodal ultra‐high‐molecular‐weight polyethylene (UHMWPE)/high‐density polyethylene (HDPE) in‐reactor blends (IRBs) are produced by the bimetallic catalysts, which are synthesized through co‐supporting silylchromate and vanadium‐oxide‐based catalysts on silica or alumina, zirconia and titania‐modified silica. After support modification, the activities of the catalysts for ethylene polymerization are substantially enhanced. The IRBs produced by the modified catalysts also contain more UHMWPE and low‐molecular‐weight polyethylene (LMWPE) fractions, and have much broader molecular weight distribution (MWD). The homogeneous nature of the IRBs is preliminarily confirmed by the differential scanning calorimetry melting curves, showing unique melting peak in both nascent and recrystallized states. The rheological results reflect that the viscosity of the IRBs is reduced more or less when compared with UHMWPE. The distinct elastic dominance of the IRBs is also observed, implying the UHMWPE characteristics in the IRBs. In addition, the intimate mixing of the IRBs is further verified by the similar slopes of Han curves for the polyethylene (PE) samples. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3404–3412  相似文献   

16.
Thermally induced phase separation (TIPS) has prompted a great deal of interest, especially as an effective approach to fabricate ultra-high molecular weight polyethylene (UHMWPE) microporous membranes. However, the existing utilized diluents for the TIPS process of UHMWPE suffer from environmental and health issues. Herein, we utilized low molecular weight polybutene (PB) bearing similar structure with liquid paraffin (LP) but inferior miscibility with UHMWPE relative to UHMWPE/LP blend, as a diluent for the TIPS process of UHMWPE. The phase separation behavior of UHMWPE/PB blends were investigated by the combination of rheological measurements, optical microscopy as well as differential scanning calorimeter (DSC). The results suggest that PB is fully miscible with UHMWPE at elevated temperature, but yielding a more sensitive phase separation behavior in respect to LP in TIPS process, because PB has weaker interaction with UHMWPE. The Jeziorny method analysis indicates that the crystallization mechanism of UHMWPE/LP blends is in line with that of UHMWPE/PB blends, which includes nucleation and growth as well as their dynamic competition. Moreover, compared to those of UHMWPE/LP blends, UHMWPE/PB blends display higher TIPS temperature and faster TIPS rate along with faster overall crystallization rate, further demonstrating that PB can accelerate phase separation rates and enhance the efficiency of TIPS process.  相似文献   

17.
采用直接氟化处理新技术对板材进行了表面处理,明显增强其可粘性,与环氧黏合剂粘接的剪切强度可达4.72 MPa,且氟化处理后样品在室温环境放置1个月后,与环氧粘接的剪切强度基本保持不变.扫描电镜结果显示,氟化后UHMWPE板材表面形貌结构并未发生明显变化.接触角测试发现氟化后UHMWPE表面极性部分明显增加,表面能由30...  相似文献   

18.
Compared with aramid fabrics, ultrahigh molecular weight polyethylene fiber unidirectional (UHMWPE UD) composites have higher ballistic limited velocity at the same areal density, making UHMWPE UD composites better candidate materials for the design of body armor against ballistic and stab impact. In this study, UHMWPE UD composites impregnated with thermoplastic films were prepared, and a novel methodology was proposed to evaluate the stab‐resistant performance of these composites using the concept of stab impact. Stab‐resistant performance is strongly affected by stab impact parameters, such as stab velocity or impact energy, layers of UD, and stab angle. Results show that the stab‐resistant performance of composites can be significantly improved by thermoplastic films, particularly polyethylene terephthalate and polypropylene films. The structure of UD composites functions importantly in enhancing stab resistance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Interpretation of X-ray photoelectron spectroscopy (XPS) spectra of complex material surfaces, such as those obtained after surface plasma treatment of polymers, is confined by the available references. The limited understanding of the chemical surface composition may impact the ability to determine suitable coupling chemistries used for surface decoration or assess surface-related properties like biocompatibility. In this work, XPS is used to investigate the chemical composition of various ultra-high-molecular-weight polyethylene (UHMWPE) surfaces. UHMWPE doped with α-tocopherol or functionalised by active screen plasma nitriding (ASPN) was investigated as a model system. Subsequently, a more complex combined system obtained by ASPN treatment of α-tocopherol doped UHMWPE was investigated. Through ab initio orbital calculations and by employing Koopmans' theorem, the core-electron binding energies (CEBEs) were evaluated for a substantial number of possible chemical functionalities positioned on PE-based model structures. The calculated ΔCEBEs showed to be in reasonable agreement with experimental reference data. The calculated ΔCEBEs were used to develop a material-specific peak model suitable for the interpretation of merged high-resolution C 1 s, N 1 s and O 1 s XPS spectra of PE-based materials. In contrast to conventional peak fitting, the presented approach allowed the distinction of functionality positioning (i.e. centred or end-chain) and evaluation of the long-range effects of the chemical functionalities on the PE carbon backbone. Altogether, a more detailed interpretation of the modified UHMWPE surfaces was achieved whilst reducing the need for manual input and personal bias introduced by the spectral analyst.  相似文献   

20.
Aramid fibers and ultra-high molecular weight polyethylene (UHMWPE) fibers lack active surface functional groups, and the surface is smooth, limiting their practical application in textile composite materials. In this study, zinc oxide nanorods were used to grow on aramid fibers surfaces, and oxygen plasma followed by treatment with a silane coupling agent was used to modify UHMWPE fibers. The effects of surface modification on the surface morphology and composition, and mechanical properties of fibers and composites were investigated. The mechanical response of interlayer hybrid textile composite materials based on modified aramid and UHMWPE fabrics was examined. The results reveal that surface roughness, active surface functional groups, and wettability that can be controlled by treatment conditions and parameters are important for improving interface adhesion. In addition, the interlayer hybridization pattern as a result of using dissimilar layer materials and altering stacking sequence has a great impact on the mechanical behavior of hybrid textile composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号