首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

2.
Transition from oil-in-water (O/W) emulsions to water-in-oil (W/O) emulsions and its action on enhanced oil recovery was investigated by viscosity, morphology, and simulated flooding experiments. This transition can be realized by increasing the volume ratio of oil to water or decreasing the emulsifier concentration. At a mass concentration of 0.3 wt%, the self-developed emulsifier FJ-1 mainly forms O/W emulsions at a volume ratio (oil to water) of 1:1. The emulsions behave as O/W emulsions with a low viscosity when the volume ratio of oil to water is below 2:1. Above 2:1, increasing volume ratio leads to the O/W emulsions transferring into W/O emulsions with high viscosity. For example, at a volume fraction of 4:1, the viscosity of W/O emulsions reaches 229.1 mPa · s, and separated water can hardly be detected. Transition from O/W emulsions to W/O emulsions with high viscosity can also be realized by decreasing the concentration of emulsifier to 0.05 wt% or lower at a volume ratio of 1:1. These may be the critical factors leading to transition from O/W emulsions to W/O emulsions at core conditions. Simulated flooding experiments show that emulsifier fluids can act as an in situ mobility improver and make an improvement of oil recovery even by 20.4%. The results indicate that the water-in-crude-oil emulsions possess great potential in enhancing oil recovery.  相似文献   

3.
Formulation optimization of emulsifiers for preparing multiple emulsions was performed in respect of stability by using artificial neural network (ANN) technique. Stability of multiple emulsions was expressed by the percentage of reserved emulsion volume of freshly prepared sample after centrifugation. Individual properties of multiple emulsions such as droplet size, δ, viscosity of the primary and the multiple emulsions were also considered. A back‐propagation (BP) network was well trained with experimental data pairs and then used as an interpolating function to estimate the stability of emulsions of different formulations. It is found that using mixtures of Span 80 and Tween 80 with different mass ratio as both lipophilic and hydrophilic emulsifiers, multiple W/O/W emulsions can be prepared and the stability is sensitive to the mixed HLB numbers and concentration of the emulsifiers. By feeding ANN with 39 pairs of experimental data, the ANN is well trained and can predict the influences of several formulation variables to the immediate emulsions stability. The validation examination indicated that the immediate stability of the emulsions predicted by the ANN is in good agreement with measured values. ANN therefore could be a powerful tool for rapid screening emulsifier formulation. However, the long‐term stability of the emulsions is not good, possibly due to the variation of the HLB number of the mixed monolayers by diffusion of emulsifier molecules, but can be greatly improved by using a polymer surfactant Arlacel P135 to replace the lipophilic emulsifier.  相似文献   

4.
Emulsification properties of chitosan   总被引:5,自引:0,他引:5  
 The chitosans use as an emulsifier in food emulsions was explored. The properties of chitosan (air/solution surface activity, electrical conductivity, HLB) were studied. The obtained emulsions were stable multiple w/o/w emulsions, whose characteristics were explained on the basis of the emulsifier structure and solution properties. The reaction with an anionic surfactant, sodium dodecylsulfate, was also studied, giving a water-insoluble complex at a given surfactant/chitosan ratio. Received: 24 March 1998 Accepted: 13 July 1998  相似文献   

5.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

6.
In presented research, multiple W/O/W emulsions were developed by using experimental design method. A 24-1 fractional factorial design was performed by varying the following input parameters: primary polymeric emulsifier (PEG 30-dipolyhydroxystearate) concentration (0.8% and 2.4%), secondary polymeric emulsifier (Poloxamer 407) concentration (0.8% and 1.2%), electrolyte magnesium sulfate heptahydrate (0.08% and 0.4%) and electrolyte sodium chloride (0.08% and 0.4%). Multiple emulsions were prepared by a two-step emulsification process. Obtained emulsions were characterized with rheological measurements, conductivity and centrifugation tests. Factorial analysis revealed that the concentration of the primary emulsifier was the predominant factor influencing the phase separation, conductivity and maximal apparent viscosity. Additionally, electrolyte magnesium sulfate heptahydrate was more efficient in stabilizing these systems, compared to sodium chloride. The applied fractional factorial design method enabled determination of the optimal concentrations of the primary and secondary emulsifier, as well as the concentration of electrolytes, in order to obtain W/O/W emulsions with desired maximal apparent viscosities, low values of conductivity and without phase separation after centrifugation.  相似文献   

7.
To find an optimal formulation of oil-in-water (O/W) emulsions (φo = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier.  相似文献   

8.
A systematic experimental study of the effect of several factors on the mean drop diameter, d32, during emulsification, is performed with soybean oil-in-water emulsions. These factors are (1) type of used emulsifier; (2) emulsifier concentration, CS; and (3) ionic strength of the aqueous solution. Three different types of emulsifier, anionic (sodium dodecyl sulfate, SDS), nonionic (polyoxyethylene-20 cetyl ether, Brij 58), and protein (whey protein concentrate), are studied. For all of the studied systems, two well-defined regions are observed in the dependence of d32 on CS: at low surfactant concentration, d32 increases significantly with the decrease of CS (region 1), whereas d32 does not depend on CS at high surfactant concentration (region 2). The model, proposed by Tcholakova et al. (Langmuir 2003, 19, 5640), is found to describe well the dependence of d32 on CS in region 1 for the nonionic surfactant and for the protein emulsifier at high electrolyte concentration, 150 mM NaCl. According to this model, a well defined minimal surfactant adsorption (close to that of the dense adsorption monolayer) is needed for obtaining an emulsion. On the other hand, this model is found inapplicable to emulsions stabilized by the ionic surfactant, SDS, and by the nonionic surfactant, Brij 58, at low electrolyte concentration. The performed theoretical analysis of drop-drop interactions, in the emulsification equipment, shows that a strong electrostatic repulsion between the colliding drops impedes the drop-drop coalescence in the latter systems, so that smaller emulsion drops are obtained in comparison with the theoretically predicted ones. The results for SDS-stabilized emulsions in region 1 are explained by a quantitative consideration of this electrostatic repulsion. The drop size in region 2 (surfactant-rich regime) is described very well by the Kolmogorov-Hinze theory of turbulent emulsification.  相似文献   

9.
The two dominant factors that were found to affect the stability of multiple emulsions in high HLB surfactant systems are the osmotic pressure imbalance between the internal aqueous phase and the external aqueous phase, and the adsorption/desorption characteristics of the emulsifier/surfactant film at the oil/water interface. Synergistic interaction between the low HLB emulsifier and the high HLB surfactant that produces very low interfacial tension of the order of 10(-2) mN/m at the oil/water interface was found to occur in some of the systems investigated. Long term stability was observed in multiple emulsion containing these systems. However, no synergy was observed in systems in which either the oil or the emulsifier, or both, contained unsaturated chains. In fact, desorption of the adsorbed surfactant film was observed in systems containing unsaturated chains. The observed desorption from the interface of the emulsifier in these systems was attributed mainly to the inability of the unsaturated chains to form a close packed, condensed interfacial film. Presence of closely packed, condensed interfacial film is necessary to prevent solubilization of the adsorbed low HLB emulsifier by the high HLB surfactant. Multiple emulsions prepared using systems containing unsaturated hydrocarbons were highly unstable.  相似文献   

10.
表面活性剂不仅对均相的非线性化学反应动力学研究有重要作用”-‘],而且表面活性剂穿越油水界面扩散时形成的自发液膜振荡过程亦可作为一个简单模型,用以说明多相反应与扩散偶合所产生的复杂周期现象,特别是说明生物系统生理现象中的振荡与混饨.这些早在贺占博的博士论文l’]就已提出,但至今此方面的研究仍进展甚微,而其意义却非常重大,迫切需要进一步研究.关于液膜振荡的本质,目前有两种说法.一种是界面流体力学的Marangoni效应,另一种为化学本质的胶束一单分子膜一反胶束的表面活性剂聚集状态的周期变化l’‘.我们的实验…  相似文献   

11.
In this work, bovine submaxillary gland mucin (BSM) was used as an emulsifier to stabilize oil–water emulsion systems. Prior to use, commercial BSM was purified by jacalin affinity chromatography. Emulsions consisting of 5% mineral oil in phosphate buffered saline (PBS) were prepared through the addition of different amounts of purified mucin followed by sonication using either of two methods: (1) low energy input for a long time (2 h), or (2) high energy input for a short time (20 s). The surfactancy property of mucin was investigated by surface tension measurements, which showed the BSM to greatly reduce the surface tension of PBS. Compared to several synthetic surfactants of the Pluronic® type, mucin showed comparable or better surface activity than F68, F88 and F108 products in dilute solutions. The formed emulsions had a mean droplet size that decreased monotonically with increasing concentration of mucin until a plateau was reached at concentrations around 0.1% by weight. The stability of these emulsions was evaluated by monitoring their average droplet size during a 33-day period. Emulsions with more than 0.25% mucin showed a constant mean size throughout the period. Specifically, an emulsion produced with 0.95% mucin showed a stable mean droplet size of about 300 nm. The stability of the mucin-emulsified systems was also evaluated by measuring turbidity changes with time, which allowed a comparison with similar emulsions stabilized by the Pluronic® surfactants in the same concentration. Thus, mucin showed its ability to establish more stable and more efficient oil–water emulsion systems. Since mucin is a glycoprotein, and hence biodegradable, our results suggest that mucin might serve as an ideal biological surfactant for the stabilization of emulsion systems intended for biomedical and pharmaceutical applications.  相似文献   

12.
To be considered as a suitable vehicle for drugs/cosmetic actives, an emulsion system should have a number of desirable properties mainly dependent on surfactant used for its stabilization. In the current study, C(12-14) alkyl polyglucoside (APG)-mixed emulsifier of natural origin has been investigated in a series of binary (emulsifier concentration 10-25% (w/w)) and ternary systems with fixed emulsifier content (15% (w/w)) with or without glycerol. To elucidate the systems' colloidal structure the following physicochemical techniques were employed: polarization and transmission electron microscopy, X-ray diffraction (WAXD and SAXD), thermal analysis (DSC and TGA), complex rheological, pH, and conductivity measurements. Additionally, the emulsion vehicles' skin hydration potential was tested in vivo, on human skin under occlusion. In a series of binary systems with fixed emulsifier/water ratios ranging from 10/90 to 25/75 the predominance of a lamellar mesophase was found, changing its character from a liquid crystalline to a gel crystalline type. The same was observed in gel emulsions containing equal amounts of emulsifier and oil (15% (w/w)), but varying in glycerol content (0-25%). Different emulsion samples exhibited different water distribution modes in the structure, reflecting their rheological behavior and also their skin hydration capacity.  相似文献   

13.
The effects of pressure, irradiation dose rate, and emulsifier concentration on the rate of polymerization of styrene emulsions stabilized with a nonionic surfactant, Teric GX13, were investigated. Results differed from those previously obtained with anionic surfactants and did not follow Smith–Ewart kinetics. The controlling influence of the surfactant at the particle–water interface on the reaction was demonstrated and results could be interpreted in terms of the Medvedev equation. Using this equation, we determined a value for the activation volume for chain propagation, ΔV, as ?18.7 cm3 mol?1. This value is the same as that for pure styrene and emulsions that follow Smith–Ewart kinetics.  相似文献   

14.
由高碳醇制备O/W微小乳状液   总被引:1,自引:0,他引:1  
戴乐蓉  金毅 《应用化学》1993,10(3):57-59
中碳醇与高浓度的离子型表面活性剂(15%~30%)混合可制备O/W型微乳,分散质点为0.01~0.1μm。以高碳醇与低浓度离子型表面活性剂(0.6%~3%)为混合乳化剂,可制得内相体积为25%的苯乙烯在水中的微小乳状液(miniemulsion)粒子大小为0.1~0.4μm,与普通乳状液相比,具有颗粒小、分散均匀、稳定性高的特点。本文研究季胺盐等离子型表面活性剂与高碳醇混合乳化剂体系中制备微小乳状液的条件及其稳定机制。  相似文献   

15.
非离子型活性乳化剂及其水性环氧树脂的制备和性能   总被引:2,自引:0,他引:2  
以α-甲氧基-ω-N-异丙醇基-对苯甲胺基聚乙二醇和酚醛环氧树脂F51为原料合成了非离子型活性乳化剂(PEGF51),并与F51混合,通过相反转法制备了分散相粒径为纳米级的PEGF51/F51水乳液.通过红外光谱和凝胶渗透色谱(GPC)分析了PEGF51的结构,研究了PEGF51浓度对PEGF51/F51水乳液分散相粒子粒径和D230-PEGF51/F51固化产物的力学性能、断面形貌和耐水性能的影响规律.结果表明:在环氧树脂分子结构中引入化学连接的PEG链段有利于提高环氧树脂链段的亲水性和应变松弛速率.增加PEGF51浓度,制备的PEGF51/F51水乳液分散相粒子粒径减小,粒度分布变窄;D230-PEGF51/F51固化产物的玻璃化转变温度和室温下的刚度和拉伸强度降低,冲击强度、断裂应变和吸水率增加.PEGF51与F51物质的量的比为1∶3时可制备出同时具有优异的拉伸强度、模量、断裂应变、冲击性能和低吸水率的D230-PEGF51/F51环氧树脂.  相似文献   

16.
Factors that affect the phase-inversion temperature (PIT) based on nonionic surfactant fatty alcohol ethoxylates were investigated. Phase-inversion process was continuously monitored by determining changes in conductivity with temperature. The influences of oil-to-water ratio, emulsifier concentration, emulsifier mixing ratio, sodium chloride, and oil types on the PIT of emulsions were investigated. Results showed that the PIT of the emulsions declined with increased oil-to-water ratio. Emulsifier concentration significantly affected the PIT temperature. High sodium chloride content suppressed phase inversion. A lower Brij72-to-Brij721 ratio corresponded to higher PIT. Different oils required different HLB numbers in the phase-inversion process.  相似文献   

17.
Aqueous high internal phase volume ratio (O/W 90/10) Janus emulsions of a vegetable oil and a silicone fluid were prepared in a single step emulsification by the common vibrator equipment. The basis for the unique structure is discussed in relation to pair-wise interactions between the components with especial emphasis on the surfactant concentration in the aqueous phase.  相似文献   

18.
The water-in-oil high internal phase emulsions were the subject of the study. The emulsions consisted of a super-cooled aqueous solution of inorganic salt as a dispersed phase and industrial grade oil as a continuous phase. The influence of the industrial grade oil type on a water-in-oil high internal phase emulsion stability was investigated. The stability of emulsions was considered in terms of the crystallization of the dispersed phase droplets (that are super-cooled aqueous salt solution) during ageing. The oils were divided into groups: one that highlighted the effect of oil/aqueous phase interfacial tension and another that investigated the effect of oil viscosity on the emulsion rheological properties and shelf-life. For a given set of experimental conditions the influence of oil viscosity for the emulsion stability as well as the oil/aqueous interfacial tension plays an important role. Within the frames of our experiment it was found that there are oil types characterized by optimal parameters: oil/aqueous phase interfacial tension being in the region of 19–24 mN/m and viscosity close to 3 mPa s; such oils produced the most stable high internal phase emulsions. It was assumed that the oil with optimal parameters kept the critical micelle concentration and surfactant diffusion rate at optimal levels allowing the formation of a strong emulsifier layer at the interface and at the same time creating enough emulsifier micelles in the inter-droplet layer to prevent the droplet crystallization.  相似文献   

19.
Abstract

The aim of this work was to study the encapsulation properties of polyols-in-oil-in-water (P/O/W) multiple emulsions for Vitamin C (Vc). The influence of formulation factors, including the concentration of lipophilic emulsifier, hydrophilic emulsifier, salt and glycerol had been investigated. The results indicated that the encapsulation stability could be improved by increasing the lipophilic emulsifier concentration which could strengthen the interfacial film. In contrast, the excess of hydrophilic emulsifier destabilized the emulsion. The presence of glycerol in the outer aqueous phase accelerated the phase transfer, thus reduced the encapsulation rate. The addition of salt in inner polyols phase had little effect on encapsulation rate while markedly affected the morphology and stability of this system. P/O/W multiple emulsions showed better encapsulation stability than the W/O/W multiple emulsions as the former’s encapsulation rate could remain more than 75% after 2?weeks while the latter only remained less than 60%. Meanwhile, the P/O/W emulsions exhibited higher storage modulus (G’), bigger loss modulus (G’’) and broaden linear viscoelastic regions than W/O/W emulsions.  相似文献   

20.
The objective of this work was to formulate and to further improve the stability of emulsions based on thyme essential oil. Several nonionic surfactants of different nature and with different hydrophilic?lipophilic balance (HLB) values were investigated. The surfactant with optimal HLB found for the thyme essential oil was Appyclean 6548 (HLB: 9-9.5). Afterwards, stabilizing biopolymers were added in order to improve emulsion stability. Properties of emulsions were evaluated in terms of droplet size and physical stability. Thyme essential oil/W emulsions formulated with a new biodegradable emulsifier (alkyl polypentoside) and welan gum as stabilizer were obtained with high shelf-life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号