首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
The phase states of mixed dilute solutions of PAA, PEG, and Cu2+ ions largely determines the mechanism governing the growth of metal nanoparticles during the subsequent reduction of copper ions. Mixtures with PAA: PEG > 1 base-mol/base-mol and PAA: Cu2+ ≥ 5 base-mol/mol are studied. It is shown that the simultaneous complexation of PAA with PEG and Cu2+ ions in these mixtures at pH values below the intrinsic pH of a solution is accompanied by phase separation related to insolubility of PAA-PEG interpolymer complexes. A decrease in the pH of the ternary mixture is caused by the release of a strong low-molecular-mass acid due to complexation with Cu2+ ions. The minimum pH value, above which the PAA-PEG-Cu2+ system becomes single-phase (a transparent solution), depends on the concentration ratio between PAA and PEG chains (the mean degree of polymerization). This value is either 6.8–7.0 (if all macromolecules are incorporated in the insoluble interpolymer complex with PEG) or 4.0 (if chains occur in excess). Methods of preparing single-phase systems in the pH range 4.0–7.0 via exchange reactions of the PAA-Cu2+ complex with PEG or the nonstoichiometric soluble interpolymer complex PAA-PEG are developed. Viscometry, electron microscopy, and dynamic light scattering are used to investigate the compositions and structures of soluble complexes, in which either each chain (if the chain is long) may be linked with both PEG and Cu2+ ions or PAA chains are redistributed between two complexes (at comparable lengths of PAA and PEG chains).  相似文献   

2.
通过熔融共混法制备了一系列的PLA/PAA共混物,考察了PLA/PAA共混体系的流变行为和热性能(结晶行为和热降解行为).FTIR测试结果证实PLA与PAA分子链之间形成了氢键网络.动态剪切流变测试和DSC测试均表明共混体系的流变行为和冷结晶行为会随着PAA含量的改变而改变,这可能是由于PLA与PAA的氢键作用受到PAA含量的影响.另外,DSC测试证实共混体系中的氢键网络还会受到试样热历史的影响.当PAA含量较低(低于5 wt%)时,PLA/PAA共混体系中PAA与PLA熔体两相的相分离不严重,使得PAA与PLA分子链能够较大限度地接触而形成较强的氢键作用,因而可以明显减缓增塑作用对黏度降低的影响.  相似文献   

3.
In this study, the influence of pH variation on structural and magnetic phase transition of gamma radiolytic synthesized iron oxide nanoparticles is investigated. The structure and magnetic properties of irradiated samples are characterized using X-ray diffraction, Fourier transfer infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometer. It was found that, in acidic irradiated solution, Fe3+ ions make various complexes with polyvinyl alcohol and water molecules which exhibit a multiphase magnetic property as a mixture of dia and paramagnetic materials. On the other hand, in basic condition, rate of radiation induced reduction of Fe3+ ions increased which leads to the formation of superparamagnetic Fe3O4 nanoparticles. By increasing pH value, in strong basic condition, the tendency of paramagnetic iron (III) oxy-hydroxide formation was high compared to other phases. This variation in the magnetic properties was explained based on iron ions reduction mechanism and the variation of the ligands’ properties during formation of nanoparticles under irradiation.  相似文献   

4.
Studying the effect of alkali and alkaline‐earth metal cations on Langmuir monolayers is relevant from biophysical and nanotechnological points of view. In this work, the effect of Na+ and Ca2+ on a model of an anionic Langmuir lipid monolayer of dimyristoylphosphatidate (DMPA?) is studied by molecular dynamics simulations. The influence of the type of cation on lipid structure, lipid–lipid interactions, and lipid ordering is analyzed in terms of electrostatic interactions. It is found that for a lipid monolayer in its solid phase, the effect of the cations on the properties of the lipid monolayer can be neglected. The influence of the cations is enhanced for the lipid monolayer in its gas phase, where sodium ions show a high degree of dehydration compared with calcium ions. This loss of hydration shell is partly compensated by the formation of lipid–ion–lipid bridges. This difference is ascribed to the higher charge‐to‐radius ratio q/r for Ca2+, which makes ion dehydration less favorable compared to Na+. Owing to the different dehydration behavior of sodium and calcium ions, diminished lipid–lipid coordination, lipid–ion coordination, and lipid ordering are observed for Ca2+ compared to Na+. Furthermore, for both gas and solid phases of the lipid Langmuir monolayers, lipid conformation and ion dehydration across the lipid/water interface are studied.  相似文献   

5.
Interpolymer adduct formation between poly(N-vinylpyrrolidone) (PVP) and poly(methacrylic acid) (PMAA) is mainly due to hydrogen bonding. It is found that the interpolymer adduct formation is enhanced in the presence of Cu(II). A simple turbidity measurement making use of a spectrophotofluorometer is described for the study of the interpolymer adduct formation. Enhanced adduct formation in the presence of Cu(II) is described by the empirical relation d[PAd]/D[PVP] = k × 10[Cu(II)]α, where PAd represents the interpolymer adduct and α and k are constants. Similar results have been obtained in the case of interpolymer adduct formation between poly(acrylic acid) (PAA) and PVP. In the above expression α signifies the influence of chelation on Cu(II)–PAA/PMAA–PVP-type complex formation and k is the extent of PVP–PAA/PMAA interaction. The enhancement of adduct formation in the presence of Cu(II) is more in PAA than in PMAA. Turbidity and viscosity measurements further indicate that the influence of Cu(II) on interpolymer adduct formation between PVP and PMAA or PAA is more in the case of PAA than PMAA, as PAA is a better chelating ligand. But the extent of adduct formation is more in the case of PMAA in the absence of Cu(II) ions due to hydrophobic interactions exerted by methyl groups.  相似文献   

6.
《Electroanalysis》2017,29(6):1586-1595
In this work, we report the development of a highly sensitive capacitance chemical sensor based on a copper C,C,C,C‐ tetra‐carboxylic phthalocyanine‐acrylate polymer adduct (Cu(II)TCPc‐PAA) for phosphate ions detection. A capacitance silicon nitride substrate based Al−Cu/Si‐p/SiO2/Si3N4 structure was used as transducer. These materials have provided good stability of electrochemical measurements. The functionalized silicon‐based transducers with a Cu(II)Pc‐PAA membrane were characterized by using Mott‐Schottky technique measurements at different frequency ranges and for different phosphate concentrations. The morphological surface of the Cu(II)Pc‐PAA modified silicon‐nitride based transducer was characterized by contact angle measurements and atomic force microscopy. The pH effect was also investigated by the Mott‐Schottcky technique for different Tris‐HCl buffer solutions. The sensitivity of silicon nitride was studied at different pH of Tris‐HCl buffer solutions. This pH test has provided a sensitivity value of 51 mV/decade. The developed chemical sensor showed a good performance for phosphate ions detection within the range of 10−10 to 10−5 M with a Nernstian sensitivity of 27.7 mV/decade. The limit of detection of phosphate ions was determined at 1 nM. This chemical sensor was highly specific for phosphate ions when compared to other interfering ions as chloride, sulfate, carbonate and perchlorate. The present capacitive chemical sensor is thus very promising for sensitive and rapid detection of phosphate in environmental applications.  相似文献   

7.
The influence of an anionic polysaccharide, κ-carrageenan, on the rheological properties of low-concentration (1.0 wt %) gelatin gels has been studied in a wide range of low polysaccharide concentrations (1 × 10?3–5 × 10?1 wt %) at a temperature of 14.0°C and pH values slightly higher than the isoelectric point of gelatin. The parameters characterizing the rheological properties of the gels are governed by the mass ratio between the polysaccharide and gelatin, which are able to form (bio)polyelectrolyte complexes in aqueous systems. There is a critical κ-carrageenan-to-gelatin mass ratio Z ? 0.1, above which the yield stress of the gels and their effective viscosit at stresses exceeding the yield point drastically rise. The increase in these rheological parameters correlates with a growth in the particle size of κ-carrageenan-gelatin polyelectrolyte complexes, which are formed in the aqueous bulk phase at an elevated temperature and precede gelation.  相似文献   

8.
Organic-inorganic hybrid materials with excellent heavy metal ions chelating properties were synthesized by covalent bonding of multifunctional polymers of polyamidoamine (PAA) type onto silica. Two series of polyamidoamine-silica hybrid materials differing in the PAA chemical structure were prepared and their thermal properties were investigated. Differential Scanning Calorimetry was used to study the effects of chain immobilization and ion chelation on the glass-transition temperature (Tg) of the polymers. The Tg of PAA-hybrid materials was elevated with respect to ungrafted PAAs. Complex formation with metal ions such as Cu++ or Co++ caused total suppression of Tg for both linear polymers as well as the corresponding hybrid materials. Finally, the silica particles slightly influenced the decomposition temperatures of linear polymers increasing their thermal stability.  相似文献   

9.
The properties of aqueous solutions of acrylic acid-ethyl methacrylate (EMA) copolymers have been investigated using pyrene and pyrene pyrenebutyltrimethylammonium (PBTA) as probes. Static and dynamic fluorescence have been used to obtain information about the microenviron-ments formed. Micropolarity studies using the I1/I3 ratio of the vibronic bands of pyrene show the formation of hydrophobic domains. At low pH the increase of the amount of ethyl methacrylate in the copolymers shows that aqueous microdomains are excluded from the core of the polymer, for the copolymers with high content of EMA low polarity microdomains are still present on the mac-romolecular chain even at higher pH. The pH-induced conformational transition indicates that the more hydro-phobic copolymers adopt a more tightly coiled conformation. Compared to PAA, the decay times for both probes are increased twice for the polymer with 25% molar proportion of EMA. The fluorescence quenching of the probes by nitromethane depends on pH, copolymer composition and probe structure. The efficiency of quenching decreases with increase of the EMA proportion in the copolymers. Pyrene is more efficiently quenched than PBTA as a consequence of the latter being located in more internal (less accessible) sites of the polymer structure.  相似文献   

10.
The electrochemical behavior of Cu electrodes in Cl solutions was studied in a wide range of pH. The results were compared with those obtained in solutions containing F, Br, I and So2−4 ions at pH 8.5, and discussed in terms of the competitive formation of Cu2O and CuCl films on the Cu surface and the influence of CuCl on the properties of Cu2O. At pH 8.5 or higher, Cu2O was formed first, whereas at pH 5.7 or lower the Cu2O film was formed on the Cu surface under the CuCl layer which was formed initially. It is believed that the Cu2O films doped with Cl ions exhibited poor protective properties against Cu corrosion.  相似文献   

11.
Copper sols are prepared via the reduction of copper ions with hydrazine borane in dilute aqueous solutions of mixtures of the PAA-Cu2+ complex and poly(ethylene glycols) of various molecular masses at PEG: PAA = 0.25 base-mol/base-mol and PAA: Cu2+ = 10 base-mol/mol in the pH range 4.0–7.0. The stability of sols against oxidation (dissolution) or aggregation (enlargement) of metal nanoparticles is much higher than that of sols prepared in the absence of PEG. With an increase in the initial pH or a decrease in the molecular mass of PEG, the formed copper nanoparticles are much larger (no less than 20 nm in diameter) than copper nanoparticles occurring in the sol prepared in a solution of the PAA double complex with Cu2+ ions and high-molecular-mass PEG at a low initial pH (3–10 nm in diameter). Copper nanoparticles in sols prepared in solutions of complexes based on the high-molecular-mass PEG do not aggregate during exposure, thereby indicating the high stability of polymer screens on their surfaces.  相似文献   

12.
The phase behavior of mixed acidic solutions of the high-molecular-mass cationic polyelectrolyte poly(1,2-dimethyl-5-vinylpyridinium methyl sulfate) and PAA at a PAA-to-polycation ratio of <1 base-mol/base-mol in narrow pH ranges at 6–30°C is studied. The reduction of Cu2+ ions in solutions and dispersions of interpolyelectrolyte complexes yields copper nanoparticles. It is shown that the mean-square diameters of nanoparticles formed in solutions of nonstoichiometric polyelectrolyte complexes are much smaller than those obtained in solutions of each component of the polyelectrolyte complex under the same conditions. These values decrease as the thermodynamic quality of the solvent with respect to the polymer of the pseudomatrix nonstoichiometric polyelectrolyte complex worsens. The experimental data may be explained in terms of the theoretical concept of pseudomatrix formation of a new phase in polymer solutions.  相似文献   

13.
14.
Insoluble complexes are formed in acidic aqueous media when poly(acrylic acid) (PAA) and poly-(vinylbenzo-18-crown-6) (P18C6) or polyvinylbenzoglymes are mixed. Complex formation results from hydrogen bonding between carboxyl groups and crown ether- or glyme–oxygen atoms as well as from hydrophobic interactions. The precipitation is pH dependent and was determined as a function of the ratio PAA to P18C6 or to polyglyme at different HCl concentrations in 10?4M solutions of polycrown or polyglyme. Precipitation is nearly quantitative in 0.01N HCl. The compositions of PAA/P18C6 precipitates were determined as a function of the initial PAA/P18C6 ratio in solution. The complexes with P18C6 can be solubilized in acidic media when crown-complexable cations (K+, Cs+, Ba2+) are added, but the charged P18C6 reprecipitates in basic solution as a polysalt complex with the PAA–polyanion. More stable PAA–P18C6 complexes in the form of fibers can be obtained by interfacial complex formation. Poly(methacrylic acid) is less effective as a complex former.  相似文献   

15.
黄茜  李英  张辉  宋新旺  李全伟  曹绪龙  李振泉 《化学学报》2009,67(21):2421-2426
采用介观动力学分子模拟(Mesodyn)和耗散颗粒动力学(DPD)分子模拟与流变等实验技术相结合的方法, 研究了pH/无机盐敏感聚合物聚丙烯酸PAA在水溶液中的环境响应行为, 考察了聚合物浓度、溶液离子强度、聚合物表面电荷对PAA相行为的影响. 实验结论与模拟结果符合得很好, 对照分析给出了聚丙烯酸的环境响应机制, 为设计和应用环境敏感的智能体系提供指导和理论依据.  相似文献   

16.
张军华 《高分子科学》2010,28(6):903-922
<正>The aim of this work is to investigate the hydrogen-bonding interaction in poly(vinyl alcohol)(PVA)/poly(acrylic acid)(PAA) blending system and its influence on rheological properties in solution and the physical properties in solid state. Introducing PAA into PVA solutions resulted in a thickening behavior of blend solutions.The viscosity of the solutions increased with PAA content increasing,and a maximum viscosity could be obtained when the ratio of PVA/PAA was 70/30. The intermolecular hydrogen-bonding and miscibility between PVA and PAA in solid state were investigated by differential scanning calorimetry(DSC),Fourier transform infrared spectroscopy(FTIR) and mechanical measurements.The results displayed the great influence of introducing PAA on the properties of blending films.The tensile strength increased from 89.31 MPa to 119.8 MPa and Young's modulus improved by over 300%with increasing PAA concentration compared with those of pure PVA films.By systematically studying the rheological behaviors of solutions and the physical properties of films,the influence of hydrogen-bonding in solutions and solid states were discussed.  相似文献   

17.
A series of novel poly(acrylic acid)/coco peat (PAA/CP) superabsorbent composites were prepared via the ultraviolet irradiation copolymerization of acrylic acid monomer (PAA) and coco peat cellulose (CP) in the presence of the cross‐linker trimethylolpropane trimaleate. The physico‐chemical structures of obtained PAA/CP were characterized by Fourier transform infrared spectroscopy, thermogravimetry/derivative thermogravimetry, X‐ray diffraction, and scanning electron microscopy, respectively. The critical parameters of affecting the water absorbency of PAA/CP, including the cross‐linker level, amount of CP and reaction time, were studied in detailed. The experimental results showed that the PAA/CP samples exhibited the maximum swelling value of 523.09 g/g in distilled water and 40.52 g/g in 0.9 wt % NaCl solution. The swelling behaviors of PAA/CP were significantly relied on the concentration of salt solution and the pH of external solution. The effect of ions species on the swelling performance was in the order: Na+ > Ca2+ > Fe3+ , and in pH 2.2 and 7.2 aqueous solutions PAA/CP composites displayed better pH‐responsiveness and reversible on‐off switching characteristics. Urea, as an agrochemical model, was loaded into PAA/CP substrate to supply with nitrogen nutrient. The test of their loading and releasing diffusion performance of urea suggested that the urea loading percentage of PAA/CP was remarkably dependent on the concentration of aqueous urea solutions and the release of urea from loaded PAA/CP samples in water followed a non‐Fickian mechanism. Owing to their considerable good water absorption capacity, slow urea release, economical and environment‐friendly merits, PAA/CP composites could be exploited for the agriculture applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Hydrolysis and condensation of monomolecular alkyloxysilane films by the Langmuir technique is presented. Octadecyltrimethoxysilane formed monolayers on aqueous subphases with different properties depending on the bulk pH. At pH 1 a solid condensed film was directly formed with a molecular area of 23 Å2 and a surface pressure/surface area variation similar to that on non-ionized stearic acid. At pH 5.6 and 11 several phase transitions were observed during the compression of the monolayer with a final collapse at a molecular area of 20 Å2. Relaxation measurements confirmed the stability of the films for longer than 12 hours at different surface pressures below a critical value.  相似文献   

19.
王杰 《高分子科学》2014,32(4):432-438
Nano-sized spherical polymer brushes(SPBs) consisting of both a polystyrene(PS) core and a brush shell of poly(acrylic acid)(PAA), poly(N-acrylcysteamine)(PSH), or poly(N-acrylcysteamine-co-acrylic acid)(P(SH-co-AA)), were prepared by photo-emulsion polymerization. The core-shell structure was observed by dynamic light scattering and transmission electron microscopy. Due to the strengthened Donnan effect, the PAA brush can adsorb heavy metal ions. Effects of the contact time, thickness of PAA brush and pH value on the adsorption results were investigated. Due to the coordination between the mercapto groups and heavy metal ions as well as the electrostatic interactions, SPBs with mercapto groups are capable to remove heavy metal ions selectively from aqueous solutions. The order of adsorption capacity of the heavy metal ions by SPBs with mercapto groups is: Hg2+ ≈ Au3+ Pb2+ Cu2+ Ni2+. The adsorbed heavy metal ions can be eluted from SPB by aqueous HCl solution, and the SPBs can be recovered. After three regenerations the recovered SPBs still maintain their adsorption capacity.  相似文献   

20.
The solubility of ozone and the kinetics of its decomposition and interaction with chloride ions in a 1 M aqueous solution of NaCl at 20°C and pH 8.4–10.8 were studied. The ratio between the concentration of O3 in solution and the gas phase was found to be 0.16 at pH 8.4–9.8. The concentration of dissolved ozone decreased sharply as pH increased to 10.8 because of a substantial increase in the rate of its decomposition. It was observed for the first time that the interaction of O3 with Cl? in alkaline media resulted in the formation of ClO 3 ? chlorate ions. The dependence of the rate of formation of ClO 3 ? on pH was determined; its maximum value was found to be 9.6 × 10?6 mol l?1 min?1 at pH 10.0 and the concentration of ozone at the entrance of the reactor 30.0 g/m3. A spectrophotometric method for the determination of chlorate ions (concentrations 1 × 10?5?3 × 10?4 M) in aqueous solutions was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号