首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

2.
Aminophylline (AMF) was studied as corrosion inhibitor for carbon steel in 1.0 mol L?1 HCl solution using electrochemical measurements associated with UV–Vis spectrophotometry and optical microscopy. Simultaneous thermogravimetry/derivative thermogravimetry and differential scanning calorimetry analysis was performed in order to determine the temperature range in which AMF is an effective inhibitor, without the decomposition risk that could change the inhibition mechanism. Thermal behaviour restricts AMF application as corrosion inhibitor for carbon steel in 1.0 mol L?1 HCl solution at temperatures ≤45 °C where there are no significant modifications of the adsorption mechanism. According to the results of electrochemical measurements, in association with UV–Vis spectrophotometry and optical microscopy techniques, AMF is a mixed-type inhibitor for carbon steel corrosion in 1.0 mol L?1 HCl solution, simultaneously suppressing the anodic and cathodic processes and acting via spontaneous physisorption on the metal surfaces.  相似文献   

3.
The inhibition effect of polyphenols extracted from olive mill wastewater (PP) on carbon steel in 1.0 M HCl solution was studied. Inhibition efficiency of PP was carried out by using chemical (weight loss method) and electrochemical techniques [potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)]. The effect of temperature and immersion time on the corrosion behavior of carbon steel in 1.0 M HCl with addition of an extract was also studied. The results show that PP acts as a very good inhibitor, and the inhibition efficiency increases with the concentration of PP and decreases with rising temperature. Polarization curves show that PP behaves as a mixed-type inhibitor in hydrochloric acid. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through an appropriate equivalent circuit model; a constant phase element has been used. EIS shows that charge-transfer resistance increases and the capacitance of double layer decreases with the inhibitor concentration, confirming the adsorption process mechanism. The activation energy as well as other thermodynamic parameters for the inhibition process were calculated. The adsorption of PP obeys the Langmuir adsorption isotherm.  相似文献   

4.
The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L−1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L−1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L−1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298–328 K. The associated apparent activation energy (E*a) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

5.
Corrosion inhibition by triazole derivatives (n-MMT) on mild steel in 5 % hydrochloric acid (HCl) solutions has been investigated by weight loss and electrochemical methods. The results obtained revealed that these compounds performed excellently as corrosion inhibitors for mild steel in HCl solution. Potentiodynamic polarization studies showed that they suppressed both the anodic and cathodic processes and inhibited the corrosion of mild steel by blocking the active site of the metal. The effect of temperature on the corrosion behavior of mild steel in 5 % HCl with the addition of different concentrations of the inhibitors was studied in the temperature range from 303 to 333 K. The associated activation corrosion and free adsorption energies were determined. The adsorption of these compounds on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of molecular structure on the inhibition efficiency has been investigated by quantum chemical calculations. The electronic properties of inhibitors were calculated and are discussed.  相似文献   

6.
Inhibition of the corrosion of mild steel in molar hydrochloric acid by two calixarenes, including the effect of inhibitor concentration and temperature, has been investigated by use of weight loss and electrochemical measurements (polarisation and impedance). The results obtained showed that the rate of corrosion decreased substantially in the presence of the compounds, with maximum inhibition of 98.2 % by one of the compounds at a concentration of 10?3 M. The effect of temperature on corrosion behaviour in the presence of different concentrations of the two new calixarenes was studied in the range 45–75 °C. The efficiency of inhibition by the compounds increased with increasing inhibitor concentration and was independent of temperature. Polarisation curves revealed that the calixarenes are mixed-type inhibitors. Adsorption of the inhibitors by the carbon steel surface obeyed the Langmuir adsorption isotherm. Some thermodynamic data for the dissolution and adsorption processes were also determined.  相似文献   

7.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

8.
The inhibition of the corrosion of mild steel in hydrochloric acid solution by the seed extract of Karanj (Pongamia pinnata) has been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, and linear polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The adsorption of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. Values of inhibition efficiency calculated from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy are in good agreement. Polarization curves showed that Karanj (P. pinnata) seed extract behaves as a mixed-type inhibitor in hydrochloric acid. The activation energy as well as other thermodynamic parameters for the inhibition process was calculated. The adsorbed film on mild steel surface containing Karanj (P. pinnata) seed extract inhibitor was also measured by Fourier transform infrared spectroscopy. The results obtained showed that the seed extract of Karanj (P. pinnata) could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.  相似文献   

9.
The inhibition effect of aqueous Argemone mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94 % is acknowledged at the extract concentration of 400 mg L?1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at the metal–acid interface. It is also confirmed by SEM micrographs and FTIR studies. Furthermore, the effects of acid concentration (1–5 M), immersion time (120 h) and temperature (30–60 °C) on inhibition potential of AMRE have been investigated by the weight loss method and electrochemical techniques. An adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with the Langmuir isotherm.  相似文献   

10.
Natural biopolymer chitosan organic compound (COC) has been used as a copper corrosion inhibitor in molar hydrochloric medium. This study was conducted by weight loss, polarization curves and electrochemical impedance spectroscopy measurements. Scanning electron microscopy, energy dispersive X-ray spectrometry and atomic force microscopy studies were used to characterize the surface of uninhibited and inhibited copper specimens. The study of the temperature effect was carried out to reveal the chemical nature of adsorption. The inhibition efficiency tends to increase by increasing inhibitor concentration to reach a maximum of 87% at 10?1 mg L?1. The values of inhibitor efficiency estimated by different electrochemical and gravimetric methods indicate the performance of copper in HCl medium containing COC. Adsorption of COC was found to follow the Langmuir adsorption isotherm. In order to get a better understanding of the relationship between the inhibition efficiency and molecular structure of COC, quantum chemical and molecular dynamics simulation approaches were performed to get a better understanding of the relationship between the inhibition efficiency and molecular structure of chitosan.  相似文献   

11.
嘧啶衍生物对钢在盐酸溶液中的缓蚀作用   总被引:1,自引:0,他引:1  
李向红  谢小光 《物理化学学报》2013,29(10):2221-2231
采用失重法、动电位极化曲线、电化学阻抗谱(EIS)、量子化学计算研究了两种嘧啶衍生物(2-羟基嘧啶(HP)和2-巯基嘧啶(MP))在1.0-5.0 mol·L-1 HCl溶液中对冷轧钢(CRS)的缓蚀作用. 结果表明: HP和MP在1.0 mol·L-1 HCl溶液中对冷轧钢具有良好的缓蚀作用, 且在钢表面的吸附符合Langmuir吸附等温式. 缓蚀率随缓蚀剂浓度的增加而增大, 但随盐酸浓度的增加而减小.求出了相应的吸附热力学参数(吸附平衡常数(K),吸附自由能(ΔG0))和腐蚀动力学参数(表观活化能(Ea)、指前因子(A)、腐蚀速率常数(k)、动力学常数(B)), 并根据这些参数讨论了缓蚀作用机理. 动电位极化曲线表明, MP和HP均为混合抑制型缓蚀剂; EIS谱呈单一容抗弧,电荷转移电阻随缓蚀剂浓度的增加而增大. 两种嘧啶化合物的缓蚀率排序为MP>HP. 量子化学计算结果表明,MP比HP更具吸附活性,缓蚀性能的理论计算和实验结果相一致.  相似文献   

12.
The effect of sodiumcarboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L-1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L -1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298-328 K. The associated apparent activation energy (E*a) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

13.
In the present investigation, a fresh water green algae spirogyra is used as an inexpensive and efficient mild steel corrosion inhibitor. The study is carried out in 0.5?M HCl solution using weight loss measurements, scanning electron microscopy–energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transforms infrared (FT-IR) techniques. The maximum inhibition efficiency was found to be 93.03% at 2?g?L?1. The adsorption of extract of spirogyra on mild steel surface obeys the Langmuir adsorption isotherm. Corrosion inhibition mechanisms were inferred from the temperature dependence of the inhibition efficiency as well as from calculation of thermodynamic and kinetic parameters which direct the process. FT-IR analysis of green algae spirogyra revealed the presence of hydroxyl, amino, and carbonyl groups, which are responsible for the adsorption on the mild steel surface. SEM analysis supported the inhibitive action of the spirogyra extract against the mild steel corrosion in acid solution.  相似文献   

14.
The inhibitive effect of 2-aminoquinoline-6-carboxylic acid (AQC) against mild steel corrosion in 1?M HCl solutions was investigated using conventional weight loss, potentiodynamic polarization, linear polarization and electrochemical impedance spectroscopy methods. The weight loss results showed that AQC is an excellent corrosion inhibitor since its efficiency increased with the concentration to attain 91.8?% at 500?mg?l?1. Electrochemical polarization measurements revealed that AQC acted as a mixed-type inhibitor and the results of electrochemical impedance spectroscopy have shown that the change in the impedance parameters, charge transfer resistance and double layer capacitance, with the change in concentration of the inhibitor is due to the adsorption of the molecule leading to the formation of a protective layer on the surface of mild steel. The adsorption was assumed to occur on the steel surface through the active centers of the molecule. The inhibition action of AQC was discussed in view of Langmuir adsorption isotherm. Density functional theory calculations of quantum parameters were used to explain efficiency in relation with molecular structure.  相似文献   

15.
The corrosion inhibitive and adsorption behaviors of Hydroclathrus clathratus on mild steel in 1 M HCl and 1 M H2SO4 solutions at 303, 313 and 323 K were investigated by weight loss, electrochemical, and surface analysis techniques. The results show that H. clathratus acts as an inhibitor of corrosion of mild steel in acid media. The inhibition efficiency was found to increase with increase in inhibitor concentration but to decrease with rise in temperature, suggestive of physical adsorption. The adsorption of the inhibitor onto the mild steel surface was found to follow the Temkin adsorption isotherm. The inhibition mechanism was further corroborated by the results obtained from electrochemical methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses supported the inhibitive action of the alga against acid corrosion of mild steel.  相似文献   

16.
The inhibitory effect of some new synthesized benzamide compounds on corrosion of mild steel in 1 M HCl solution has been studied by use of weight loss measurements and the electrochemical techniques potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibiting action is more pronounced with increasing concentration. Inhibition efficiency is maximum (approximately 99 %) at 10?3 M. Polarization measurements also show that the compounds act as mixed inhibitors. The cathodic curves indicate that reduction of protons at the mild steel surface occurs as a result of a pure activating mechanism. EIS measurements reveal increased transfer resistance with increasing inhibitor concentration. The presence of heteroatoms increases inhibition efficiency without causing a drastic change in adsorption mechanism, which follows the Langmuir isotherm model. Significant correlations were obtained between inhibition efficiency with the chemical indexes calculated, by use of the standard software Gaussian03, on the basis of density functional theory (DFT) at the B3LYP/6-31G** level of theory, indicating that variation of inhibition with inhibitor structure may be explained in terms of electronic properties. The effect of temperature on the corrosion behaviour of steel in 1 M HCl without and with inhibitors at 10?3 M was studied in the temperature range from 308 to 333 K, and the associated activation energy was determined.  相似文献   

17.
Corrosion inhibition of mild steel (MS) by chloroquine (CQ) in 1 M HCl was investigated using weight loss, polarization, electrochemical impedance spectroscopy (EIS) and quantum chemical techniques. The inhibitor showed 99 % inhibition efficiency at concentration of 3.1 × 10?4 M. Polarization studies showed that CQ is a mixed-type inhibitor. Adsorption of inhibitor molecules on the MS surface showed Langmuir adsorption isotherm. Thermodynamic parameters led to the conclusion that adsorption is predominantly chemisorption. Quantum chemical calculations were carried out to investigate the corrosion-inhibiting property of CQ. Various parameters such as energy of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), softness of molecule, Mullikan charges on various atoms and number of electrons transferred from inhibitor molecule to metal were calculated and correlated with the inhibiting property of CQ.  相似文献   

18.
In this research, we first prepared poly (naphthylamine-formaldehyde) (PNAF) and then investigated its corrosion inhibition properties for polished steel specimens in 1 M HCl solution using chemical and electrochemical methods. Results showed that the PNAF could serve as an effective inhibitor of the corrosion of steel in hydrochloric acid media (the inhibition efficiency of this polymer at an optimum concentration of 100 mg L–1 was 99.9 %). The effect of temperatures on the corrosion behavior of steel was studied in the temperature ranging from 303 to 333 K for 1 M HCl at an optimum concentration of PNAF. It has been demonstrated that the adsorption behavior of this polymer on steel in 1 M HCl was found to obey Langmuir adsorption isotherm. Also, potentiodynamic polarization measurements showed that PNAF was a mixed type inhibitor.  相似文献   

19.
The inhibition behavior of 6-methyl-4,5-dihydropyridazin-3(2H)-one (MDP) on corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 was investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) measurements. The results indicated that the corrosion inhibition efficiency depends on concentration, immersion time, solution temperature, and the nature of the acidic solutions. It is also noted that MDP is at its the most efficient in 1 M HCl and least in 0.5 M H2SO4. The effect is more pronounced with MDP concentration. It is found that the inhibition efficiency attains 98 % at 5 × 10?3 M in 1 M HCl and 75 % at 5 × 10?2 in 0.5 M H2SO4. Polarization measurements showed that the MDP acts as a mixed inhibitor. EIS diagrams showed that the adsorption of MDP increases the transfer resistance and decreases the capacitance of the interface metal/solution. From the temperature studies, the activation energies in the presence of MDP were found to be superior to those in uninhibited medium. Finally, a mechanism for the adsorption of MDP was proposed and discussed.  相似文献   

20.
The inhibitive effect of 2-cyano-3-hydroxy-4(Ar)-5-anilino thiophene derivatives on the corrosion of 304 stainless steel (SS) in 3 M HCl solution has been investigated by weight loss, galvanostatic polarization techniques, and potentiodynamic anodic polarization in 3.5 % NaCl. The results indicate that these compounds act as inhibitors retarding the anodic and cathodic corrosion reactions. The presence of inhibitors does not change the mechanism of either hydrogen evolution reaction or SS dissolution. The activation energy and some thermodynamic parameters are calculated and discussed. These compounds are mixed-type inhibitors in the acid solution, and their adsorption on the SS surface is found to obey the Temkin adsorption isotherm. The results suggest that the percentage inhibition of these thiophene derivatives increases with increasing inhibitor concentration and decreases with increasing temperature. The synergistic parameter (S) was calculated and found to have a value greater than unity, indicating that the enhanced inhibition efficiency caused by the addition of I?, SCN?, and Br? is only due to a synergistic effect. The relationship between molecular structure and inhibition efficiency was elucidated by quantum-chemical calculations using semi-empirical self-consistent field (SCF) methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号