首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal-isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute-solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute-solute term, the solute-solvent interactions, and the remainder that contains pressure-volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water-water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.  相似文献   

2.
Despite the success of DLVO theory, there exist numerous examples of interactions that do not follow its predictions. One prominent example is the interaction between hydrophilic surfaces in mixtures of water with another polar, associating solvent. Interactions of such surfaces are still poorly understood yet play a key role in a wide variety of processes in nature, biology, and industry. The interaction forces between a silica sphere and a glass plate in N-methyl-2-pyrrolidone (NMP)-water binary mixtures were measured using the AFM technique. The interactions in pure NMP and pure water agreed qualitatively with DLVO theory. In contrast, the addition of NMP to water drastically altered the interactions, which no longer followed DLVO predictions. An unusually strong, long-range (50-80 nm), multistepped attractive force was observed on the approach of hydrophilic surfaces in the NMP concentration range of 30-50 vol %, where the adhesive pull-off force was also maximized. The maximum attractive force was observed at an NMP concentration near 30 vol %, consistent with the formation of a strong hydrogen-bonded complex between NMP and water near the solid surface. The analysis of force profiles, zeta potentials, solution viscosity, and contact angles suggests that attraction arises from the bridging of surface-adsorbed macrocluster layers known to form on hydrophilic surfaces in mixtures of associating liquids.  相似文献   

3.
The geometry of surrounding water molecules on the side chain of glycine, alanine, α-aminoisobutyric acid, α-aminobutyric acid, valine, and related hydrocarbons has been analyzed combining bottom-up and quantum chemical methodologies. To minimize the cavity size and to prevent water-water hydrogen bonding loss, the water molecules adopt a shape, resembling the one found in crystal structure of gas clathrate hydrates, with water molecules tangentially oriented to the surface of hydrophobic side chain. The cage is directly hydrogen bonded to the backbone's polar groups, thus hydration shells around hydrophobic and hydrophilic groups are folded together in amphiphilic molecules. The hydrophobe enclathration implies a substantial freedom degree reduction which makes it entropically disfavored. This disadvantageous entropic contribution is partially compensated by the favorable van der Waals interactions with guest in stabilizing clathrate hydrate formation. The water shell around the side chain relates intimately with the side-chain rotational isomerism. Present data are correlated with the experimental determined populations of the three rotamers, yielding promising results for both α-aminobutyric acid and valine.  相似文献   

4.
5.
Interactions between hydrophobic chains of lipid monolayers and interactions between hydrophilic headgroups of lipid bilayers (with or without a molecular recognition step) are now well documented, especially for commonly used lipids. Here, we report force measurements between a new class of fluorinated lipid layers whose headgroups (synthetic ligands of retinoid receptors) display a very unusual polar/apolar character and can interact via a combination of hydrophobic forces and hydrogen bonds. Although these two interactions produce adhesion and are therefore not easily distinguishable, we show that it is possible to extract both contributions unambiguously. Experiments are performed both in pure water, where the adhesion is a combination of hydrophobic forces and hydrogen bonds, and in Tris buffer, where the hydrophobic effect is the dominant short-range attractive force. The contribution of hydrophobic forces scaled down to molecular interactions is deduced from force versus distance profiles, and the same value is found independently in pure water and Tris buffer, about 1 kBT. We also show that retinoid lipid layers attract each other through a very long-range (100 nm) exponential force, which is insensitive to the pH and the salinity. The origin of this long-range attraction is discussed on the basis of previously proposed mechanisms.  相似文献   

6.
Abstract

In recent years there has been intense activity in the design of synthetic molecules capable of enzyme-like recognition and binding of small substrates.1 Two fundamental approaches have been taken. The first has generally involved non-directional binding forces (such as solvophobic, π-stacking and dispersion interactions) in water-soluble cyclophane frameworks.2 This approach led to extremely important quantitative insights into the hydrophobic effect and the enthalpic and entropic contributions of solvent reorganization to binding.3 However, the weakly oriented nature of the binding interactions has resulted in only moderate substrate selectivity beyond the shape recognition permitted by the cavity. In nature such selectivity is a prerequisite for the chiral recognition and catalytic activity of enzymes and is achieved by hydrogen bonding and electrostatic interactions. The second major approach to artificial receptors makes use of these more directional interactions by incorporating several hydrogen bonding groups into a cleft or cavity of defined geometry.4 The resulting hosts form strong and selective complexes to those substrates with complementary shape and hydrogen bonding characteristics.5 In these cases, however, the binding free energy is solvent dependent, diminishing to zero as the polarity of the medium increases, due to the strong solvation of the hydrogen bonding sites. A central goal in contemporary molecular recognition research must be to develop receptors that effectively use directed hydrogen bonding interactions in competitive solvents. Success will probably require combining strong (possibly charged) hydrogen bonding groups with hydrophobic sites capable not only of effective apolar association with the substrate but also of protecting the polar sites from full solvation.  相似文献   

7.
Molecular recognition in water is challenging but water-soluble molecularly imprinted nanoparticle (MINP) receptors were produced readily by double cross-linking of surfactant micelles in the presence of suitable template molecules. When the micellar surface was decorated with different polyhydroxylated ligands, significant interactions could be introduced between the surface ligands and the template. Flexible surface ligands worked better than rigid ones to interact with the polar moiety of the template, especially for those template molecules whose water-exposed surface is not properly solvated by water. The importance of these hydrophilic interactions was examined in the context of different substrates, density of the surface ligands, and surface-cross-linking density of the MINP. Together with the hydrophobic interactions in the core, the surface hydrophilic interactions can be used to enhance the binding of guest molecules in water.  相似文献   

8.
The microscopic behaviors of a water layer on different hydrophilic and hydrophobic surfaces of well ordered self-assembled monolayers (SAMs) are studied by molecular dynamics simulations. The SAMs consist of 18-carbon alkyl chains bound to a silicon(111) substrate, and the characteristic of its surface is tuned from hydrophobic to hydrophilic by using different terminal functional groups ( CH 3 , COOH). In the simulation, the properties of water membranes adjacent to the surfaces of SAMs were reported by comparing pure water in mobility, structure, and orientational ordering of water molecules. The results suggest that the mobility of water molecules adjacent to hydrophilic surface becomes weaker and the molecules have a better ordering. The distribution of hydrogen bonds indicates that the number of water-water hydrogen bonds per water molecule tends to be lower. However, the mobility of water molecules and distribution of hydrogen bonds of a water membrane in hydropho- bic system are nearly the same as those in pure water system. In addition, hydrogen bonds are mainly formed between the hydroxyl of the COOH group and water molecules in a hydrophilic system, which is helpful in understanding the structure of interfacial water.  相似文献   

9.
Biologically relevant hydrophilic molecules rarely interact with hydrophobic compounds and surfaces in water owing to effective hydration. Nevertheless, herein we report that the hydrophobic cavity of a polyaromatic capsule, formed through coordination‐driven self‐assembly, can encapsulate hydrophilic oligo(lactic acid)s in water with relatively high binding constants (up to Ka=3×105 m −1). X‐ray crystallographic and ITC analyses revealed that the unusual host–guest behavior is caused by enthalpic stabilization through multiple CH–π and hydrogen‐bonding interactions. The polyaromatic cavity stabilizes hydrolyzable cyclic di(lactic acid) and captures tetra(lactic acid) preferentially from a mixture of oligo(lactic acid)s even in water.  相似文献   

10.
Dissolution enthalpies of L-alpha-proline, L-alpha-tyrosine, L-alpha-tryptophan, L-alpha-histidyne, L-alpha-arginine, L-alpha-lysine, L-aspartic acid, and L-alpha-glutamic acid in aqueous solutions of urea have been measured by calorimetry at a temperature of 298.15 K. The values of dissolution enthalpy were used to determine enthalpic heterogeneous pair interaction coefficients between the zwitterions of the natural amino acids and a molecule of urea in water solution. These coefficients were interpreted in terms of the hydrophobic or hydrophilic effects of the side chains of amino acids on their interactions with a polar molecule of urea in water.  相似文献   

11.
The interfacial tension (gamma(SW)) between a condensed-phase material (S) and water (W) is one of the most important terms occurring (directly or indirectly) in the major surface thermodynamic combining rules, such as the different variants of the Dupré equation, as well as the Young and the Young-Dupré equations. Since the late 1950s, gamma(SL) (where L stands for liquid in general) could be correctly expressed, as long as one only took van der Waals attractions and electrical double layer repulsions into account, i.e., as long as both S and L were apolar. However for interfacial interactions taking place in water among apolar as well as polar solutes, particles or surfaces, gamma(SW) was not properly worked out until the late 1980s, due in particular to uncertainties about the treatment of the polar properties of liquid water and other condensed-phase materials. In this review the historical development of the understanding of these polar properties is outlined and the polar equation for gamma(SW), as well as the equations derived there from for the free energies of interaction between apolar or polar entities, immersed in water (deltaG(SWS)) are discussed. Also discussed is the role of the various terms of deltaG(SWS), in hydrophobic attraction (the "hydrophobic effect"), hydrophilic repulsion ("hydration forces") and in the quantitative expression of hydrophobicity and hydrophilicity. The DLVO theory of attractive and repulsive free energies between particles immersed in liquids, as a function of distance between suspended particles, was extended to allow its use in the expression of the polar interactions occurring in water. Finally, the free energy term, deltaG(SWS) and the related gamma(SW), have been directly linked to the aqueous solubility of organic and biological solutes, which allows the determination of interfacial tensions between such solutes and water from their solubilities.  相似文献   

12.
In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.  相似文献   

13.
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.  相似文献   

14.
The specific hydrophobic effect involved in the self‐assembly of a bolaamphiphilic perylene bisimide (PBI) dye bearing oligoethylene glycol (OEG) chains has been identified. In pure water, the self‐assembly is entropically driven and enthalpically disfavored, as explored by optical spectroscopy and isothermal titration calorimetry studies. Besides strong π–π interactions between the PBI units that are primarily of enthalpic nature, the major contribution to the self‐assembly is the gain of entropy by release of confined water molecules from the hydration shell of the hydrophilic OEG moieties. Both contributions favor self‐assembly, but their countervailing thermodynamic parameters are reflected in an uncommon temperature dependence, which can be inverted upon gradual addition of an organic cosolvent that makes the π–π interaction increasingly dominant.  相似文献   

15.
Enthalpies of solution of amides of formic, acetic, and propionic acids with different degrees of N-substitution in aqueous solutions of ethylene glycol were measured at 298.15 K. The concentration of ethylene glycol did not exceed 4 mol kg–1. The reasons for increasing endothermic values of the enthalpies characterizing the amide transfer from water to a mixed aqueous-organic solvent on going from primary to tertiary amides and from formamides to the corresponding acetamides are discussed. The enthalpic coefficients of pair interactions between amides and ethylene glycol in water were calculated. The endothermicity of the interaction of the alkyl groups of the amide molecules with ethylene glycol results in positive values of the coefficients. The coefficient values increase with the enhancement of the hydrophobic properties of hydrophilic non-electrolytes (urea, formamide, ethylene glycol) due to an increase in the contribution of the hydrophobic component and a decrease in the contribution from the interaction of the polar groups of amides to the total interaction.  相似文献   

16.
The adsorption behaviors of extended anionic surfactants linear sodium dodecyl(polyoxyisopropene)4 sulfate (L-C12PO4S), branched sodium dodecyl(polyoxyisopropene)4 sulfate (G-C12PO4S), and branched sodium hexadecyl(polyoxyisopropene)4 sulfate (G-C16PO4S) on polymethylmethacrylate (PMMA) surface have been studied. The effect of branched alkyl chain on the wettability of the PMMA surface has been explored. To obtain the adsorption parameters such as the adhesional tension and PMMA-solution interfacial tension, the surface tension and contact angles were measured. The experimental results demonstrate that the special properties of polyoxypropene (PO) groups improve the polar interactions and allow the extended surfactant molecules to gradually adsorb on the PMMA surface by polar heads. Therefore, the hydrophobic chains will point to water and the solid surface is modified to be hydrophobic. Besides, the adsorption amounts of the three extended anionic surfactants at the PMMA–liquid interface are all about 1/3 of those at the air–liquid interface before the critical micelle concentration (CMC). However, these extended surfactants will transform their original adsorption behavior after CMC. The surfactant molecules will interact with the PMMA surface with the hydrophilic heads towards water and are prone to form aggregations at the PMMA–liquid interface. Therefore, the PMMA surface will be more hydrophilic after CMC. In the three surfactants, the branched G-C16PO4S with two long alkyl chains exhibits the strongest hydrophobic modification capacity. The linear L-C12PO4S is more likely to densely adsorb at the PMMA–liquid interface than the branched surfactants, thus L-C12PO4S possesses the strongest hydrophilic modification ability and shows smaller contact angles on PMMA surface at high concentrations.  相似文献   

17.
Model clusters of surfactant prototypes with small number of water molecules are calculated at different levels of theory. All approaches used yield correct trends in the variation of the dipole moment upon tail elongation or polar headgroup variation. Models including one, two, or more water molecules are optimized. The most stable structures are those with maximum number of atoms involved in hydrogen bonding. The normal components of the dipole moment prove to be less sensitive to the nature (aliphatic or aromatic) of the hydrophobic tail, in accord with findings from the phenomenological models. Values of the dipole moment approaching the experimental estimates required inclusion of sufficient aqueous environment (>20 water molecules per hydrophilic head) and of lateral intersurfactant interactions into the model.  相似文献   

18.
In order to clarify some aspects of the hydrophobic interactions, the enthalpies of dilution of monoethylurea, 1,3-dimethylurea, and 1,3-diethylurea have been determined calorimetrically at 25°C. The calorimetric data, expressed in terms of excess enthalpy, permit the evaluation of the pair and triplet interaction coefficients. The analyses of these and of the analogous coefficientsg xx andg xxx, derived from osmotic data, indicate a driving force favorable to the interactions among the hydrated solute molecules. Nevertheless, the positive values of theh xx andh xxx coefficients seem to suggest that the source of the effect is a rearrangement of the water molecules rather than a direct association of the solute molecules. There are evidences of a strict correlation between the enthalpic and the entropic effects. Preliminary data were presented at the International Conferences on Chemical Thermodynamics at Baden (1973) and Montpellier (1975). The experimental part was carried out at the Istituto Chimico of the University of Trieste. To whom correspondence should be addressed.  相似文献   

19.
This paper is a review of the points of view of Frank and Evans, Shinoda and the author regarding the hydrophobic hydration of hydrocarbon molecules, with the emphasis on the contribution of the author. It is demonstrated that the enthalpic free energy change, due to the interactions between the hydrocarbon molecules and water, is compensated by the entropic free energy change, due to the ordering caused by the hydrocarbon molecules in the neighboring water molecules. Further, it is shown that the free energy change due to the iceberg formation is negative. Some simplifying assumptions make it possible to conclude that the absolute value of the free energy for iceberg formation can be as large as 1/3 of the free energy change associated with the formation of a cavity. The thermodynamic approach employed can also explain the existence of a minimum in the temperature dependence of the hydrocarbon solubility in water.  相似文献   

20.
The excess concentration of cholesterol in the bloodstream can be brought down to a safer level by utilizing a potential cholesterol-binding agent such as a carbon nanotube (CNT). Here, we have probed solvent-mediated interactions between cholesterol and CNT by performing molecular dynamics simulations and potential-of-mean force (PMF) calculations. Simulations predict favorable interactions between water-mediated cholesterol and CNT owing to strong mutual interactions between them, whereas water plays an opposing role in the association. The breakdown of PMF into its enthalpic and entropic contributions indicates that contrary to traditional entropy-driven hydrophobic association, the cholesterol encapsulation within a CNT is primarily driven by enthalpy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号