首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stability of jojoba oil/water emulsion systems was investigated using the conductivity technique. Egg white, egg yolk, and bovine serum albumin (BSA) proteins were used as emulsifiers. Stability of above emulsions was investigated using several protein concentrations (0.05–0.50 mg/ml) and several oil volume fractions, OVF, (0.25; 0.50). It was concluded from the results that the investigated emulsions stability, when using BSA, was higher than when using egg white or egg yolk. In addition, emulsion stability did not show a strong dependence on OVF, except at the higher protein concentration of 5.0 mg/ml, where ES increased significantly with increasing OVF. Finally, emulsifier activity was found to increase with increasing OVF.  相似文献   

2.
In this study, it was aimed to compare the rheological properties of carboxymethylcellulose (CMC) in aqueous solutions and their corresponding emulsions containing 0.05, 0.1, 0.25, and 0.5% CMC in the aqueous phase. Samples with 0.05 and 0.1% CMC showed Newtonian behavior, but shear-thinning behavior was observed in CMC solutions and emulsions with increasing CMC concentrations to 0.25% and 0.5%. Rheological behavior of all samples were modeled by Power law (R 2 = 0.986–197) and Casson models (R 2 = 0.968–1). According to the Ostwald–de Waele model, the consistency index of all samples was increased and the flow behavior index decreased with increasing CMC concentration. Comparison of our data with four predicting models (Einstein, Larson, Pal, and Dougherty-Krieger equations) showed that the viscosity of continuous phase controls the viscosity of emulsions with high CMC concentrations and these models are not applicable for such situations. Addition of CMC increased the emulsion stability of O/W emulsions. This stability was increased with increasing CMC concentrations.  相似文献   

3.
Palm oil esters (POEs) are wax esters derived from palm oil and cis-9-octadecen-1-ol. The excellent wetting behaviour of the esters without the oily feel make them have great potentials in the manufacture of cosmeceutical and pharmaceutical products. However, little is known about their phase behaviors in ternary systems. The purpose of this investigation was to construct phase diagram of the POEs and mixed surfactants and to consequently select nanoemulsions composition for further studies. The preparation and characterization of oil-in-water nanoemulsions stabilized by hydrocolloid gums were then studied. Two types of nonionic surfactants were selected, namely Tween 80 (T80) and Span 80 (S80). Ternary phase diagram of POEs:Tocotrienol/T80:S80 (80:20)/water system was constructed at 25.0 ± 0.5°C. The emulsification properties of 2 hydrocolloids gum (xanthan gum, carbopol ultrez 20 copolymer) were investigated. Gum dispersions were prepared in water (0.8%) and emulsified with 30% oil using a Polytron homogenizer. The flow curve of the emulsions always exhibited shear thinning behavior and obeys the power law viscosity. The emulsions with carbopol ultrez 20 copolymer was the most stable emulsions which composed of very small oil droplets (50% < 142.43 nm) with a narrow size distribution.  相似文献   

4.
A vertical sleeve separator using glass microfiber with a mean diameter of 4 µm as coalescence medium was explored to remove oil from the oil-in-water (O/W) emulsions. The artificial emulsions were prepared by mixing diesel oil and water to obtain oil droplets with a mean diameter about 7 µm. A series of experiments were performed to investigate the effect of such parameters as bed porosity (0.850–0.925), bed height (2.0–20.0 mm), flow velocity (1.0–20.0 mL/s), and influent oil concentration (200.0–3000.0 mg/L) on the effluent oil concentration and oil removal efficiency. The obtained effluent oil concentration was from 4.98 to 53.04 mg/L, and the oil removal efficiency was 96.4–99.8%. In addition, the article identifies the interaction between bed porosity and height, explains the mutual influences between the emulsion velocity and concentration, and quantitatively derives the appropriate ranges of bed characteristics and operating conditions.  相似文献   

5.
The objectives of this study were to examine the influence interfacial composition on environmental stresses stability of oil in water emulsions. An electrostatic layer-by-layer deposition method was used to create the multilayered interfacial membranes with different compositions: (i) primary emulsion (Soy protein Isolate); (ii) secondary emulsion (Soy protein Isolate – OSA-starch); (iii) tertiary emulsion (Soy protein isolate – OSA-starch – chitosan). Fourier transform-infrared (FTIR) and scanning electron microscopy (SEM) results confirmed the adsorption of charged polyelectrolyte onto oppositely charge polyelectrolyte-coated oil droplets. The stability of primary, secondary, and tertiary emulsions to thermal treatment (30 min at 30–90°C), pH (3–7) and NaCl (0–500 mM) were determined using ζ-potential, particle diameter, and microstructure analysis. Primary emulsions were unstable at pH 4–7, salt concentrations, and thermal treatments. Secondary emulsions were stable to creaming and droplet aggregation at pH 3–5, at ≤50 mM NaCl, and unstable at thermal treatments, whereas tertiary emulsions were stable at all salt concentrations, thermal treatments, and at pH 3–6. These results demonstrate that these polymers can be used to engineer oil in water emulsion systems and improve the emulsion stability to environmental stresses.  相似文献   

6.
Transition from oil-in-water (O/W) emulsions to water-in-oil (W/O) emulsions and its action on enhanced oil recovery was investigated by viscosity, morphology, and simulated flooding experiments. This transition can be realized by increasing the volume ratio of oil to water or decreasing the emulsifier concentration. At a mass concentration of 0.3 wt%, the self-developed emulsifier FJ-1 mainly forms O/W emulsions at a volume ratio (oil to water) of 1:1. The emulsions behave as O/W emulsions with a low viscosity when the volume ratio of oil to water is below 2:1. Above 2:1, increasing volume ratio leads to the O/W emulsions transferring into W/O emulsions with high viscosity. For example, at a volume fraction of 4:1, the viscosity of W/O emulsions reaches 229.1 mPa · s, and separated water can hardly be detected. Transition from O/W emulsions to W/O emulsions with high viscosity can also be realized by decreasing the concentration of emulsifier to 0.05 wt% or lower at a volume ratio of 1:1. These may be the critical factors leading to transition from O/W emulsions to W/O emulsions at core conditions. Simulated flooding experiments show that emulsifier fluids can act as an in situ mobility improver and make an improvement of oil recovery even by 20.4%. The results indicate that the water-in-crude-oil emulsions possess great potential in enhancing oil recovery.  相似文献   

7.
The solid particles or polymers were often solely used to stabilizing emulsions, as an interesting alternative to classical used emulsifiers. However, a united use of them and the relation between them at stabilizing emulsions were little reported. Our previous study showed that the preparation of microspheres containing zedoary turmeric oil (ZTO, as an oily drug), Aerosil200 particles and hydroxypropyl methylcellulose acetate succinate (HPMCAS). ZTO emulsions were produced when the microspheres were immersed into aqueous media and disaggregated under gentle agitation, and were stabilized by Aerosil200 particles and HPMCAS. Nevertheless, more work needs to be carried out to explain the factor affecting emulsification efficiency of microspheres, which will facilitate the design of the microsphere formulation. Thus, in this study, we dealt with a system consisting of Aerosil, HPMCAS, ZTO and water. To predict the best ratio of Aerosil/polymer and thus obtain the best satisfying ZTO emulsions, the bonding studies were carried out with Aerosil and HPMCAS. A series of emulsions was prepared and the stability and droplet size of resultant emulsions were investigated. The results indicated two kinds of HPMCAS (HPMCAS-LG and -HG) showed the different affinity for Aerosil200, which resulted in the unlike capability to stabilize emulsions when at the same Aerosil/polymer ratio. The stability and droplet size of emulsions increased on increasing the ratio Aerosil to polymer, and the best ratio was predictable from the Langumuir-fit of the adsorption isotherms. Appropriate hydrophilicity and hydrophobicity with Aerosil particles were very important to stabilizing the ZTO emulsions.  相似文献   

8.
The susceptibility of heart healthy ω-3 fatty acids to lipid oxidation has hindered its incorporation into healthful foods and beverages. In this study, plant-based flaxseed oil rich in ω-3 fatty acids were dispersed into primary, secondary and tertiary emulsion system. A primary emulsion containing sodium caseinate-stabilized cationic droplets was prepared by homogenizing flaxseed oil as oil phase and sodium caseinate solution as the aqueous phase in an ultrasonicator. A secondary emulsion comprising of sodium caseinate–sodium alginate anionic droplets were produced by diluting appropriate primary emulsion with alginate solution. Further, a tertiary emulsion composed of sodium caseinate–sodium alginate–chitosan-coated cationic droplets was produced by diluting secondary emulsion with chitosan solution. The resistance of primary, secondary and tertiary emulsions with the same lipid concentration to destabilization by thermal treatment (30–90 °C for 30 min), sodium chloride addition (≤70 mM NaCl) and oxidative degradation (hydroperoxide concentration and TBARS) was determined. The results showed that secondary emulsions could resist variation in environmental stresses of salt and heat as well as protect the oil phase from decomposition better than primary and tertiary emulsions. Interfacial engineering could be used to design emulsion system with desirable characteristics.  相似文献   

9.
The stabilization of flavor emulsions is a challenge for the industry of functional beverages. In this work, whey protein isolate was used as the stabilizing agent in concentrated orange oil-in-water emulsions. A 23 factorial design was performed, varying the ratio of orange oil/water (30–60%), the concentration of whey protein (1–15%), and the concentration of the surfactant dioctyl sulfosuccinate sodium (0–100 mg L?1). Analyses of surface tension, film formation, zeta potential, particle size, and turbidity were performed. Stable emulsions containing 60% of oil phase were prepared. β-Carotene and α-tocopherol were successfully encapsulated, without affecting the emulsion's stability.  相似文献   

10.
The herbal medicament derived from the lipid soluble fraction obtained from Curcuma longa L. (Zingiberaceae) has shown potential neuroprotective activity in disorders like stroke. HM has been standardized with three biomarkers: ar-turmerone, α/β-turmerone and curlone, major bisabolane sesquiterpenes of turmeric oil. Development of a biaonalytical method for these sesquiterpenes was initiated to characterize its preclinical pharmacokinetics in rabbits to accelerate its development as a potential candidate for vascular complications. Since, the compounds are structurally and chemically very similar, gradient elution was utilized on a C-18 reversed phase column with a mobile phase comprising of acetonitrile and deionised water. The UV detector was set at wavelengths 240 and 270 nm. The sample clean-up was performed by protein precipitation with acetonitrile. The method was reasonably sensitive with limits of quantitation (LOQ) of 0.098 μg mL?1 in plasma for all the analytes. Accuracy and precision were within the acceptable limits, as indicated by relative standard deviation (% RSD) varying from 1.3 to 13.6% and bias values ranging from ?5.5 to 10.3%, respectively. Moreover, the analytes were stable in plasma even after three freeze-thaw cycles. The method was applied to generate preliminary pharmacokinetics of turmeric oil in rabbits after intravenous administration.  相似文献   

11.
The aim of the present study was to design and develop topical submicron size gel formulation of linseed oil with enhanced permeation through the skin for the management of psoriasis. Linseed oil contains significant amount of α-linolenic acid (ALA) an omega-3 fatty acid, which is responsible for its pharmacological actions. In order to enhance permeation through skin, microemulsion based gel formulation was prepared and characterized. Microemulsions were prepared by aqueous phase titration method, using linseed oil, Unitop 100, PEG 400, and distilled water as the oil phase, surfactant, cosurfactant and aqueous phase, respectively. Selected formulations were subjected to physical stability studies and consequently in vitro skin permeation studies. Surface morphology studies of optimized formulation were done by transmission electron microscopy (TEM). The droplet size of microemulsions ranged from 70 to 500 nm with average particle size 186 nm. The optimized microemulsion was converted into hydrogel using carbopol 971 which had a viscosity of 498 ± 0.04 cps. During in vitro permeation study the flux of microemulsion formulation and gel was found to be 19.05 and 10.2 µg/cm2/hr, respectively, which indicated better penetration of linseed oil through the skin. These result indicated that the developed ME formulation may be a good approach for topical therapy for the management of psoriasis.  相似文献   

12.
The objective of the current study was to evaluate long-term stability of emulsions with rice oil by assessing their physical properties. For this purpose, six emulsions were prepared, their stability was examined empirically, and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil and thickener content) were indicated with optimization software based on Kleeman's method. Synthesized emulsions were studied by numerous techniques involving determination of particle size and distribution of emulsion, optical microscopy, viscosity, and novelty analysis—Turbiscan test.

The emulsion containing 50 g of oil and 1.2 g of thickener had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 35.93 to 50 g of oil and 0.94 to 1.19 g of thickener. The computer software based on Kleeman's method proved to be useful for fast optimization of the composition and providing parameters of stable emulsion systems. Forming emulsions based on rice oil is a chance to introduce a new, interesting representative of functional food as well as a cosmetic product.  相似文献   

13.
Four samples from different crude oils were used for this study: light and heavy crude oils from Iran and two crude oils from Egypt, namely, Ras Gharb and Suez mix. The asphaltenes were separated from these crude oils and then the maltene (non‐asphaltenic fraction) was fractionated into waxes, aromatics, and resins. All fractions were characterized using FTIR and UV spectroscopic analyses in addition to gel permeation chromatograph (GPC). These fractions were tested for their emulsion stability. For chemometric analysis different parameters (variables) have been used to study the effect of different fractions (objects) on the emulsion stability. Such variables included the integrated areas under the stretching absorption peaks of CH in the range of 3000–2800 cm?1, C?O in the range of 1750–1650 cm?1, and the aromatic C?C in the range of 1650–1550 cm?1, as well as UV absorption value at 235 nm and average molecular weight (MW). Principal component analysis (PCA) and multiple linear regression (MLR) were conducted for examining the relationship between multiple variables and the stability of water‐in‐crude oil emulsions. The results of PCA explain the interrelationships between the observations and variables in multivariate data. The correlation coefficients between different parameters derived from PCA reveals that the UV absorption value and MW are strongly correlated with emulsion stability. It also reveals that the resins, asphaltenes, and maltene have better emulsion stability than waxes and lower molecular weight aromatics. The linear relationship between the parameters and the stability of water‐in‐crude oil emulsions using MLR was modeled according to the better statistical results. The obtained mathematical model can be used to predict the stability of water‐in‐crude oil emulsions from the chemical groups and functionalities in each crude oil fraction.  相似文献   

14.
In this work, we have tested various formulations in order to get emulsions containing pure water, Tunisian olive oil, Tunisian clays, and an ammonium salt. Two different types of clays: smectite and kaolinite and the cethyltrimethylamonium bromide (CTAB) were tested. CTAB is used as surfactant and a compound modifying the clays properties. The amount of CTAB being fixed at 0.66 w/w, the proportions of clays were varied from 0 to 9% for each of the following proportions of water: 10, 20, 30%. To the aqueous phase obtained by mixing two separate aqueous phases: water + CTAB and water + clay, the oil was added drop by drop, the agitation being maintained at 5000 rpm. The obtained mixtures were analyzed by Differential Scanning Calorimetry (DSC), optical microscopy and bottle tests. An optimized formulation containing water (30%), smectite clay (5.3%) and CTAB (0.66%) was found to give W/O emulsions which kinetic stability is greater than 75 days regarding coalescence and greater than 700 hours regarding sedimentation.  相似文献   

15.
Oil-in-water emulsions containing 40% wt sunflower oil were prepared using ultrasound with the frequency of 30 kHz. The effect of sonication time, stabilizer concentration, NaCl, and pH of aqueous phase on the stability and particle size distribution of samples was investigated using Taguchi statistical method. The results showed that increasing sonication time decreased mean diameter of droplets and narrowed droplet size distribution curves. NaCl was found to have a positive effect on the stability of samples. More stable emulsions were prepared when using xanthan and pectin together at pH 4.  相似文献   

16.
The interfacial and bulk properties of submicron oil-in-water emulsions simultaneously stabilised with a conventional surfactant (either lecithin or oleylamine) and hydrophilic silica nanoparticles (Aerosil?380) were investigated and compared with emulsions stabilised by either stabiliser. Emulsions solely stabilised with lecithin or oleylamine showed poor physical stability, i.e., sedimentation and the release of pure oil was observed within 3 months storage. The formation and long-term stability of silica nanoparticle-coated emulsions was investigated as a function of the surfactant type, charge, and concentration; the oil phase polarity (Miglyol?812 versus liquid paraffin); and loading phase of nanoparticles, either oil or water. Highly stable emulsions with long-term resistance to coalescence and creaming were formulated even at low lecithin concentrations in the presence of optimum levels of silica nanoparticles. The attachment energy of silica nanoparticles at the non-polar oil-water interface in the presence of lecithin was significantly higher compared to oleylamine in line with good long-term stability of the former compared to the sedimentation and release of oil in the latter. The attachment energy of silica nanoparticles at the polar oil-water interface especially in the presence of oleylamine was up to five-times higher compared to the non-polar liquid paraffin. The interfacial layer structure of nanoparticles (close-packed layer of particle aggregates or scattered particle flocs) directly related to the free energy of nanoparticle adsorption at both MCT oil and liquid paraffin-water interfaces.  相似文献   

17.
The effect of hydrophobicity index (HI) of fumed nanosilica specimens on stability of water-in-oil (W/O) highly concentrated emulsions (HCE with ? = 90 vol%) with an overcooled dispersed phase was studied. A series of five silica with HI in the 0.60–1.34 range and HI > 3 were used separately and in combination with a low molecular weight traditional surfactant, Sorbitan MonoOleate (SMO). First, it was shown that SMO alone can stabilize W/O HCE whereas only silica nanoparticles with intermediate HI in the range 0.97 ≤ HI ≤ 1.34 could form W/O emulsions only up to 77–79 vol%. Then, on the contrary to SMO-based emulsions, Pickering emulsions are unstable under shearing. When mixed (silica plus SMO) emulsifier systems were used, firstly a thermodynamic consideration revealed that only SMO is likely to adsorb at the W/O interface and controls the emulsifying process by the decrease in the interfacial tension. Then, interestingly, all different kinds of emulsion stability investigated in this study demonstrate a breaking point (BP) at HI = 0.97. Below the BP the emulsions were found to be very unstable on shelf as well as under shear. Above the BP, a clear synergy between colloidal silica and SMO surfactant has been found.   相似文献   

18.
Mixtures of polyols (glycerol, propylene glycol, glucose) and water were emulsified in oil (isopropyl myristate (IPM), medium chain triglycerides (MCT), long chain triglycerides (LCT), and d-limonene) under elevated pressures and homogenization, in the presence of polyglycerol polyricinoleate (PGPR), glycerol monooleate (GMO), and their mixture as emulsifiers to form water-in-oil emulsions. High pressures was applied to: a) the emulsion, b) the aqueous phase and c) the oil phase in the presence of the emulsifiers (PGPR and GMO). Under optimal pressure (2000 atms) applied to the ready-made emulsion or to the aqueous phase prior to its emulsification, and with optimal composition (30wt% polyol in the aqueous phase and MCT as the oil phase), the aqueous droplets were stable for months and submicron in size (0.1 μm). Moreover, due to equalization of the oil and the aqueous phases refractive indices, the emulsions were almost transparent. Pressure and polyols have synergistic effects on the emulsions stability. During preparation, surface tensions and interfacial tensions were dramatically reduced until an optimal water/polyols ratio was achieved, which allows rupturing of the droplets to submicronal size (0.1 μm) without recoalescence and fast diffusion to the interface. These unique W/O emulsions are suitable for preparing W/O/W double emulsions for sustained release of active materials for food applications.  相似文献   

19.
Thermo- and photo-responsive emulsions were prepared using mineral oil as an oil phase and a thermo- and-photo-sensitive polymer as an emulsifier. Hydroxyethyl acrylate (HEA) was copolymerized with Coumaryl acrylate (CA) and 2-Ethylhexyl acrylate (EHA) by a free radical reaction with the content of CA in the reaction mixture being varied (0, 0.5, 1, 2, 3 mol%) and the content of EHA being kept constant (2 mol%). CA was used as a photo-responsive comonomer and EHA was used as a hydrophobic comonomer to endow the copolymer with amphiphilicity. The copolymers prepared using the HEA/CA/EHA mixture where CA content was 1, 2, 3 mol% exhibited a phase transition in the range of 20°C– 45°C, and the phase transition temperature decreased with increasing the content. The CA of the copolymers was readily dimerized under the irradiation of UV (365 nm. 400 W) and the dimerization degree was 27%–47% in 60 min. The droplet size of emulsions significantly increased with increasing the temperature from 27°C- 50°C, possibly due to the thermal contraction of the copolymers. Also, the size markedly increased by 60 min-irradiation of the UV light, possibly because of the photo collapse of the copolymers.  相似文献   

20.
An experimental study on yield stress of water-in-heavy crude oil emulsions has been carried out by using a HAAKE RS6000 Rheometer with a vane-type rotor. Several factors such as oil volume fraction, shear rate, temperature, and emulsifying agent on the yield stress of emulsions were investigated. Zero shear viscosity of heavy crude oil was 6000 mPas at 30°C, with a density 955 kg/m3. This study shows that the yield stress increases linearly with the increasing shear rate, and displays an exponential decay with increasing the temperature and oil volume fraction. Although the addition of emulsifying agent enhanced the stability of the emulsion, to some extent it also increased the yield stress, especially for the emulsions with high oil volume fractions. Therefore, to reduce the start-up force for the pipeline transport of water-in-heavy crude oil emulsions, the starting rate should be decreased, temperature increased, or oil volume fraction increased. These results are helpful to improve the transportation of water-in-heavy crude oil in pipeline.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号