首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photodegradation behaviour of ethylene-vinyl acetate copolymer (EVA)/low density polyethylene (LDPE) composite containing four different types of titanium dioxide (TiO2) was investigated through colour difference, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and mechanical tests. The results showed that the performance losses of composites were qualitatively correlated with the degradation degree. The vinyl acetate (VA) groups in EVA were sensitive to UV light and the photodegradation mainly occurred in the amorphous region. The chain scission and annealing effect facilitated the secondary crystallization of composites. The heterogeneous nucleation effect of TiO2 on the crystallization of composites was related to the particle size of TiO2. The micro rutile TiO2, micro anatase TiO2 and their mixture (rutile/anatase = 13/87) exhibited a photo-stabilising effect, while the nano mixed crystals TiO2 (rutile/anatase = 20/80) had an opposite effect.  相似文献   

2.
Nonisothermal crystallization kinetics of ternary blends of the metallocence polyethylene (mPE), low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) were studied using DSC at various scanning rates. The Ozawa theory and a method developed by Mo were employed to describe the nonisothermal crystallization process of the two selected ternary blends. The results speak that Mo method is successful in describing the nonisothermal crystallization process of mPE/LLDPE/LDPE ternary blends, while Ozawa theory is not accurate to interpret the whole process of nonisothermal crystallization. Each ternary blend in this study shows different crystallization and melting behavior due to its different mPE content. The crystallinity of the ternary blends rises with increasing mPE content, and mPE improve the crystallization of the blends at low temperature. The crystallization activation energy of the five ternary blends that had been calculated from Vyazovkin method was increased with mPE content, indicating that the more mPE in the blends, the easier the nucleus or microcrystallites form at the primary stage of nonisothermal crystallization. LLDPE and mPE may form mixed crystals due to none separated-peaks were observed around the main melting or crystallization peak when the ternary blends were heating or cooling. The fixed small content of LDPE made little influence on the main crystallization behavior of the ternary blends and the crystallization behavior was mainly determined by the content of mPE and LLDPE.  相似文献   

3.
Extensive thermal and relaxational behavior in the blends of linear low-density polyethylene (LLDPE) (1-octene comonomer) with low-density polyethylene (LDPE) and high-density polyethylene (HDPE) have been investigated to elucidate miscibility and molecular relaxations in the crystalline and amorphous phases by using a differential scanning calorimeter (DSC) and a dynamic mechanical thermal analyzer (DMTA). In the LLDPE/LDPE blends, two distinct endotherms during melting and crystallization by DSC were observed supporting the belief that LLDPE and LDPE exclude one another during crystallization. However, the dynamic mechanical β and γ relaxations of the blends indicate that the two constituents are miscible in the amorphous phase, while LLDPE dominates α relaxation. In the LLDPE/HDPE system, there was a single composition-dependent peak during melting and crystallization, and the heat of fusion varied linearly with composition supporting the incorporation of HDPE into the LLDPE crystals. The dynamic mechanical α, β, and γ relaxations of the blends display an intermediate behavior that indicates miscibility in both the crystalline and amorphous phases. In the LDPE/HDPE blend, the melting or crystallization peaks of LDPE were strongly influenced by HDPE. The behavior of the α relaxation was dominated by HDPE, while those of β and γ relaxations were intermediate of the constituents, which were similar to those of the LLDPE/HDPE blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1633–1642, 1997  相似文献   

4.
In this study, non-isothermal crystallization of neat high density polyethylene (HDPE) and HDPE/titanium dioxide (TiO2) composite was studied using differential scanning calorimetry. Non-isothermal kinetic parameters were determined by Jeziorny approach and Mo’s method. Polarized optical microscopy and wide angle X-ray diffraction were applied to observe the crystal morphology and investigate the crystal structure, respectively. It was found TiO2 particles could act as nucleating agent during the crystallization process and accelerate the crystallization rate. The Avrami index indicated nucleating type and growth of spherulite of HDPE was relatively simple. The result of activation energy indicated it was more and more difficult for the polymer chains to crystallize into the crystal lattice as the crystallization progressed. HDPE/TiO2 composites exhibited lower ΔE values, suggesting TiO2 particle could make the crystallization of HDPE easier. HDPE/TiO2 composites had much smaller spherulite size than that of neat HDPE. HDPE formed more perfect crystal when TiO2 particles were added into its matrix without changing the original crystal structure of HDPE.  相似文献   

5.
Small-angle light-scattering (SALS) patterns were obtained during melting and crystallization of blends of linear low-density polyethylene (LLDPE) with conventional low-density polyethylene (LDPE). Quantitative measurements of these SALS patterns using a two-dimensional optical multichannel analyzer apparatus (OMA2) indicate that the LLDPE which is miscible with the LDPE component in the molten state crystallizes first, forming volume-filling spherulites. The LDPE then crystallizes within the preformed spherulites. These findings are supported by optical microscopy studies showing that the blend samples were volume filled with one kind of the spherulites having a radius comparable to that of the pure LLDPE. The SALS intensity curve changes with composition of the blends in a manner that may be interpreted by considering the orientation of crystals within spherulites. It has been observed that the spherulites in the blend have more diffuse boundaries as the LDPE content increases. The lattice spacing and long spacings in blends were obtained by wide-angle and small-angle x-ray scattering, respectively. The SALS technique along with differential scanning calorimetry (DSC) is shown to be useful for determining the crystallization behavior of a crystallizable polymer blend system.  相似文献   

6.
Melting and crystallization phenomena in blends of a linear low-density polyethylene (LLDPE) (ethylene butene-1 copolymer) with a conventional low-density (branched) polyethylene (LDPE) are explored with emphasis on composition by differential scanning calorimetry (DSC) and light scattering (LS). Two endotherms are evident in the DSC studies of the blends, which suggests the formation of separate crystals. Light-scattering studies indicate that the blend system is predominantly volume filled by the LLDPE component whereby the LDPE component crystallizes as a secondary process within the domain of the LLDPE spherulites. In contrast to those of the LLDPE/HDPE blends, the mechanical and optical relaxation behavior of the LLDPE/LDPE blends are dominated by the LLDPE component in the vicinities of γ and β regions, whereas the trend reverses at high temperature α regions. This observation is accounted for on the basis of the relative restrictions imposed by the deformation of spherulites (which are primarily made up of the LLDPE component) at different time scales.  相似文献   

7.
张利 《高分子科学》2016,34(7):889-900
The open-cell structure foams of linear low-density polyethylene (LLDPE) and linear low-density polyethylene (LLDPE)/multi-wall carbon nanotubes (MWCNTs) composites are prepared by using supercritical carbon dioxide (sc-CO2) as a foaming agent. The effects of processing parameters (foaming temperature, saturation pressure, and depressurization rate) and the addition of MWCNTs on the evolution of cell opening are studied systematically. For LLDPE foaming, the foaming temperature and saturation pressure are two key factors for preparing open-cell foams. An increase in temperature and pressure promotes both the cell wall thinning and cell rupture, because a high temperature results in a decrease in the viscosity of the polymer, and a high pressure leads to a larger amount of cell nucleation. Moreover, for the given temperature and pressure, the high pressurization rate results in a high pressure gradient, favoring cell rupture. For LLDPE/MWCNTs foaming, the addition of MWCNTs not only promotes the cell heterogeneous nucleation, but also prevents the cell collapse during cell opening, which is critical to achieve the open-cell structures with small cell size and high cell density.  相似文献   

8.
Small‐angle light scattering (SALS) measurements were used to study the structure of titanium dioxide (TiO2)/low‐density polyethylene (LDPE) nanocomposites. The results showed that the scattering from LDPE crystalline structures and the scattering from TiO2 nanoparticles can be resolved and separated. It is shown that the independent effects of crystallization conditions and the presence of nanoparticle aggregates on the spherulitic structure of the LDPE matrix can be determined by analyzing the scattering patterns using the methods proposed. From the SALS results, we conclude that the nanoparticle surface chemistry affects both nucleation of spherulites and their structure particularly under rapid cooling conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1084–1095, 2006  相似文献   

9.
Titanium dioxide (TiO2) particles were introduced to improve the solar reflectance of high-density polyethylene (HDPE). The organic-inorganic hybrids were fabricated by melt blending. A series of characterizations were taken to study the crystallization behavior, morphology, solar reflectance, and real cooling property. TiO2 particles acted as nucleation agents in the HDPE matrix and made the HDPE form thick lamellar crystals. TiO2 particles could disperse well into the HDPE matrix under 2.5 wt.% loading but agglomerated with 3 wt.%. Solar reflectance was related to the reflective index of TiO2 and the microstructure of HDPE. The real cooling property depended on the solar reflectance and the dispersion of the TiO2 particles in the HDPE matrix.  相似文献   

10.
A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO2, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {TpMs}NiCl ( 1 ) and Cp2ZrCl2 ( 2 ), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO2, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3506–3512  相似文献   

11.
The open-cell structure foams of linear low-density polyethylene(LLDPE) and linear low-density polyethylene(LLDPE)/multi-wall carbon nanotubes(MWCNTs) composites are prepared by using supercritical carbon dioxide(sc-CO_2)as a foaming agent. The effects of processing parameters(foaming temperature, saturation pressure, and depressurization rate) and the addition of MWCNTs on the evolution of cell opening are studied systematically. For LLDPE foaming, the foaming temperature and saturation pressure are two key factors for preparing open-cell foams. An increase in temperature and pressure promotes both the cell wall thinning and cell rupture, because a high temperature results in a decrease in the viscosity of the polymer, and a high pressure leads to a larger amount of cell nucleation. Moreover, for the given temperature and pressure, the high pressurization rate results in a high pressure gradient, favoring cell rupture. For LLDPE/MWCNTs foaming, the addition of MWCNTs not only promotes the cell heterogeneous nucleation, but also prevents the cell collapse during cell opening, which is critical to achieve the open-cell structures with small cell size and high cell density.  相似文献   

12.
Low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) with different copper contents were prepared by melt mixing. The copper powder particle distributions were found to be relatively uniform at both low and high copper contents. There was cluster formation of copper particles at higher Cu contents, as well as the formation of percolation paths of copper in the PE matrices. The DSC results show that Cu content has little influence on the melting temperatures of LDPE and LLDPE in these composites. From melting enthalpy results it seems as if copper particles act as nucleating agents, giving rise to increased crystallinities of the polyethylene. The thermal stability of the LDPE filled with Cu powder is better than that for the unfilled polymer. The LLDPE composites show better stability only at lower Cu contents. Generally, the composites show poorer mechanical properties (except Young's modulus) compared to the unfilled polymers. The thermal and electrical conductivities of the composites were higher than that of the pure polyethylene matrix for both the LDPE and LLDPE. From these results the percolation concentration was determined as 18.7 vol.% copper for both polymers.  相似文献   

13.
Nonisothermal crystallization kinetics and melting behavior of bimodal-medium-density- polyethylene (BMDPE) and the blends of BMDPE/LDPE were studied using differential scanning calorimetry (DSC) at various scanning rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of BMDPE. The BMDPE DSC data were analyzed by the theory of Ozawa. Kinetic parameters such as the Avrami exponent (n), the kinetic crystallization rate constant (Zc), the peak temperatures (Tp) and the half-time of crystallization (t1/2) etc. were determined at various scanning rates. The appearance of double melting peaks and the double crystallization peaks in the heating and cooling DSC curves of BMDPE/LDPE blends indicated that the BMDPE and LDPE could crystallize respectively.  相似文献   

14.
The role of TiO2 nanoparticle surfaces in affecting the crystalline structure of low‐density polyethylene (LDPE) has been investigated by varying the nanoparticle surface from hydrophilic (as‐received) to less hydrophilic (dried) or more hydrophilic (polar silane treated). Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WXRD) were used to determine the degree of crystallinity and crystalline structure. The impact of nanoparticle aggregates on the nanometer to micrometer organization of LDPE crystals was studied with atomic force microscopy (AFM) and small‐angle light scattering (SALS). This characterization showed that the presence of the TiO2 nanoparticles, with the various different surface conditions investigated, did not alter the degree of LDPE crystallinity, the unit cell dimensions, the average lamellar thickness, or the average spherulite size. However, the nanoparticles did affect the internal arrangement of intraspherulitic crystalline aggregates by decreasing the relative optic axis orientation of these crystals, usually referred to as internal spherulite disorder. The LDPE filled with the nanoparticles treated with a polar silane (N‐(2‐aminoethyl) 3‐aminopropyl‐trimethoxysilane (AEAPS)) showed the highest internal spherulitic disorder and exhibited the most poorly developed spherulite structure. The combination of SALS with AFM has allowed a detailed characterization of the morphology of the semicrystalline polymer nanocomposites. Information on the internal organization of the spherulites, the size of the nanoparticle aggregates, and the location of the nanoparticle aggregates can be uniquely obtained when both techniques are used. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 488–497, 2005  相似文献   

15.
The non-isothermal crystallization kinetics of polyethylene (PE), PE/organic-montmorillonite (Org-MMT) composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples very well. The difference in the exponent n between PE and PE/Org-MMT nanocomposites, indicated that non-isothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PE and PE/Org-MMT composites, but the crystallization rate of PE/Org-MMT composite was faster than that of PE at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PE very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PE/Org-MMT was greatly larger than that of PE. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The composites of TiO2 nanoparticles (anatase structure, average particle size 20–30 nm) as inorganic particle additive in the polystyrene (PS) were prepared by co‐rotating twin screw extruder. The structure and morphology of the composites were determined by scanning electron microscope (SEM), transmission electron microscopy (TEM) and x‐ray diffraction (XRD). Titanium (Ti) element distribution on the surface of PS/TiO2 master batch was measured by energydispersive x‐ray microanalysis system. The mechanical properties such as tensile strength and Charpy impact strength were tested and revealed that reached the maximum value when the content of TiO2 nanoparticles is at 1.0 wt%. The composites possess excellent antibacterial and detoxification effect on the familiar bacillus. The antibacteria efficiency of the composites is more than 99% and its detoxification efficiency on the bacterial endotoxin is more than 90%.  相似文献   

17.
This study was focused on the photocatalytic activity of polyaniline (Pani)/iron doped titanium dioxide (Fe–TiO2) composites for the degradation of methylene blue as a model dye. TiO2 nanoparticles were doped with iron ions (Fe) using the wet impregnation method and the doped nanoparticles were further combined with Pani via an in situ polymerization method. For comparison purposes, Pani composites were also synthesized in the presence undoped TiO2. The photocatalyst and the composites were characterized by standard analytical techniques such as FTIR, XRD, SEM, EDX and UV–Vis spectroscopies. Fe–TiO2 and its composites exhibited enhanced photocatalytic activity under ultraviolet light irradiation. Improved photocatalytic activity of Fe–TiO2 was attributed to the dopant Fe ions hindering the recombination of the photoinduced charge carriers. Pani/Fe–TiO2 composite with 30?wt.% of TiO2 nanoparticles achieved 28% dye removal and the discoloration rate of methylene blue for the sample was 0.0025?min?1. FTIR, XRD, SEM, EDX and UV–Vis spectroscopies supported the idea that Fe ions integrated into TiO2 crystal structure and Pani composites were successfully synthesized in the presence of the photocatalyst nanoparticles. The novelty of this study was to investigate the photocatalytic activity of Pani composites, containing iron doped TiO2 and to compare their results with that of Pani/TiO2.  相似文献   

18.
Poly(L‐lactide) (PLLA) composites with TiO2‐g‐poly(D‐lactide) (PDLA), which was synthesized by surface‐initiated opening ring polymerization with TiO2 as initiator and Sn(Oct)2 as catalyst, were prepared by solution casting. The synthesized TiO2‐g‐PDLA was characterized by transmission electron microscope (TEM) and dynamic laser scattering (DLS), showing larger size corresponding to that of TiO2. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) measurements were further carried out and indicated that PDLA was grafted onto TiO2 through covalent bond. For PLLA/TiO2‐g‐PDLA composites, the stereocomplex crystallites were formed between PDLA grafted on the surface of TiO2 and the PLLA matrix, which was determined by FT‐IR, differential scanning calorimetry (DSC), and X‐ray diffractometer (XRD). The influence of stereocomplex crystallites on the rheological behavior of PLLA/TiO2‐g‐PDLA was investigated by rheometer, which showed greater improvement of rheological properties compared to that of PLLA/TiO2 composites especially with a percolation content of TiO2‐g‐PDLA between 3 wt%–5 wt%. The crystallization and melting behavior of PLLA/TiO2‐g‐PDLA composites were studied by DSC under different thermal treatment conditions. The formed PLA stereocomplex network acted as nucleating agents and a special interphase on the functional surface of TiO2, which resulted in imperfect PLLA crystal with lower melting temperature. When the thermal treatment was close to the melting temperature of PLA stereocomplex, the crystallinity approached to the maximum. The isothermal crystallization study by polarizing microscope (POM) indicated that stereocomplex network presented stronger nucleation capacity than TiO2‐g‐PDLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Recycled poly(ethylene terephthalate) (R‐PET) was blended with four types of polyethylene (PE), linear low density polyethylene (LLDPE; LL0209AA, Fs150), low density polyethylene (LDPE; F101‐1), and metallocene‐LLDPE (m‐LLDPE; Fv203) by co‐rotating twin‐screw extruder. Maleic anhydride‐grafted poly(styrene‐ethylene/butyldiene‐styrene) (SEBS‐g‐MA) was added as compatibilizer. R‐PET/PE/SEBS‐g‐MA blends were examined by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and mechanical property testing. The results indicated that the morphology and properties of the blends depended to a great extent on the miscibility between the olefin segments of SEBS‐g‐MA and PE. Due to the proper interaction between SEBS‐g‐MA and LDPE (F101‐1), most SEBS‐g‐MA, located at the interface between two phases of PET and LDPE to increase the interfacial adhesion, lead to better mechanical properties of R‐PET/LDPE (F101‐1) blend. However, both the poor miscibility of SEBS‐g‐MA with LLDPE (LL0209AA) and the excessive miscibility of SEBS‐g‐MA with LLDPE (Fs150) and m‐LLDPE (Fv203) reduced the compatibilization effect of SEBS‐g‐MA. DSC results showed that the interaction between SEBS‐g‐MA and PE obviously affected the crystallization of PET and PE. DMA results indicated that PE had more influence on the movement of SEBS‐g‐MA than PE did. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The crystallization and melting behavior of PP/Mg(OH)2 composites was investigated, and the crystallization kinetic parameters and thermal characteristics were investigated according to the Avrami method. Optical polarizing microscope (POM) analysis suggested that the presence of Mg(OH)2 particles gave rise to an increase in the number of nuclei and a decrease in PP spherulitic size. The Avrami exponent n of the PP and composites increased with increasing crystallization temperature, and markedly deceased with the addition of low Mg(OH)2 content. A significant increase in crystallization kinetic constant, and a decrease in crystallization half time of PP were observed in the presence of Mg(OH)2 particles, indicating a heterogeneous nucleating effect of Mg(OH)2 upon crystallization of PP. The melting temperature and equilibrium melting temperature of PP in the composites decreased with increasing the Mg(OH)2 content, which is directly related to the size of the PP crystals. The difference of PP melting enthalpies in the PP and composites demonstrated that the presence of Mg(OH)2 can effectively enhance the crystalline of PP. The crystallization thermodynamics of PP and composites were studied according to the Hoffman theory. Surface free energy of PP chain folding for crystallization of PP/Mg(OH)2 composites was lower than that of PP, confirming the heterogeneous nucleation effect of Mg(OH)2. However, the evaluation of the nucleation activation energy of PP suggested the presence of a large amount of Mg(OH)2 particles in the PP matrix reduced the mobility of PP segments and restricted the development of PP nucleation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1914–1923, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号