首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of several operational variables on the electrostatic separation of water-in-crude oil emulsions is investigated in a concentric cylinder rheometer equipped with an alternating current (AC) generator. Shear rate, temperature, emulsion water content, electric field strength, and application time are all found to play a role in the process. The droplet size distributions achieved across some of the experiments are acquired to give further support to the conclusions. Finally, the experimental results are compared to the theoretical expression for the electrocoalescence process and discussed.  相似文献   

2.
The critical electrical field has been used as a tool to probe water in crude emulsion stability to electrical fields in many previous studies. Given the increasing importance of this metric, this study investigates factors that are important to the reproducibility of the measurement and the effect of emulsion preparation variables on the critical electric field. It was observed that the emulsion preparation procedure has a strong effect on the measured critical electric field due to droplet size effects. Furthermore, the effect of crude oil properties on the critical electric field was investigated using emulsions from different oils but with the same average droplet diameter, where it was found that the measurement was dominated by crude oil viscosity.  相似文献   

3.
The transport of heavy oil as concentrated oil-in-water (O/W) emulsions is one of the most promising pipeline techniques, and how to ensure a steady flow is the key to the successful application of this technology. Most of the previous studies focused on the static stability of the emulsions. However, the stability changes constantly with time and external shearing in the transportation. In this paper, a stable O/W emulsion was prepared for its dynamic stability to be tested by three methods of small-scale flow loop, rheology and stirring, respectively. The results indicated that the O/W emulsion with 30 vol.% water and 0.2 wt.% OP-10 could well satisfy the transport requirement. A critical temperature existed to make the rheological property of the emulsion rapidly deteriorate. For low-Reynolds-number turbulent pipe flow, an appropriate increase of temperatures and shear rates was conducive to the flocculation-dissociation balance of the internal phase, which could effectively reduce the apparent viscosity of the emulsion and the flow frictional resistance. High flow rate of O/W emulsions could be transported at relatively low temperatures to ensure great dynamic stability, and low flow rate of that could be done at relatively high temperatures to obtain low apparent viscosity.  相似文献   

4.
A characterization of 30 crude oils has been performed to determine the relative level of influence that individual parameters have over the overall stability of w/o emulsions. The crude oils have been analyzed with respect to bulk and interfacial properties and the characteristics of their w/o emulsions. The parameters include compositional properties, acidity, spectroscopic signatures in the infrared and near‐infrared region, density, viscosity, molecular weight, interfacial tension, dilational relaxation, droplet size distribution, and stability to gravitationally and electrically induced separation. As expected, a strong covariance between several physicochemical properties was found. Near‐infrared spectroscopy proved to be an effective tool for crude oil analysis. In particular, we have showed the importance of the hydrodynamic resistance to electrically‐induced separation (static) in heavy crude oil‐water emulsions. A rough estimate of the drag forces and dielectrophoretic forces seemed to capture the difference between the 30 crude oils. Given enough time, water‐in‐heavy oil emulsions could be destabilized even at very low electric field magnitude (d.c.). When droplets approach each other in an inhomogeneous electric field, strong dielectrophoretic forces disintegrate the films and result in coalescence. The relative contribution from film stability to the overall emulsion stability may therefore be very different in a gravitational field compared to that in an electrical field.  相似文献   

5.
Water-in-oil (W/O) emulsions are very common in the petroleum industry, and their viscosities are the principle parameters for the operation design. Typical correlations composed by one or two factors cannot always fit the apparent viscosity of W/O emulsions very well, especially when applied to the crude oil/water emulsions. The viscosities of W/O emulsions, which were made from three kinds of crude oil, were measured by Anton Paar MCR302 viscometer at atmospheric pressure with different temperatures as well as shear rates. The experiment results indicate that W/O emulsion would exhibit Newtonian characteristic when water content is no higher than 0.2 and non-Newtonian characteristic otherwise. According to the experimental data, a modified correlation based on the Broughton–Squires model and Ronningsen model was introduced to predict the viscosity of W/O emulsions, and the comparison results showed that the new modified correlation has better accuracy than the original models.  相似文献   

6.
Four samples from different crude oils were used for this study: light and heavy crude oils from Iran and two crude oils from Egypt, namely, Ras Gharb and Suez mix. The asphaltenes were separated from these crude oils and then the maltene (non‐asphaltenic fraction) was fractionated into waxes, aromatics, and resins. All fractions were characterized using FTIR and UV spectroscopic analyses in addition to gel permeation chromatograph (GPC). These fractions were tested for their emulsion stability. For chemometric analysis different parameters (variables) have been used to study the effect of different fractions (objects) on the emulsion stability. Such variables included the integrated areas under the stretching absorption peaks of CH in the range of 3000–2800 cm?1, C?O in the range of 1750–1650 cm?1, and the aromatic C?C in the range of 1650–1550 cm?1, as well as UV absorption value at 235 nm and average molecular weight (MW). Principal component analysis (PCA) and multiple linear regression (MLR) were conducted for examining the relationship between multiple variables and the stability of water‐in‐crude oil emulsions. The results of PCA explain the interrelationships between the observations and variables in multivariate data. The correlation coefficients between different parameters derived from PCA reveals that the UV absorption value and MW are strongly correlated with emulsion stability. It also reveals that the resins, asphaltenes, and maltene have better emulsion stability than waxes and lower molecular weight aromatics. The linear relationship between the parameters and the stability of water‐in‐crude oil emulsions using MLR was modeled according to the better statistical results. The obtained mathematical model can be used to predict the stability of water‐in‐crude oil emulsions from the chemical groups and functionalities in each crude oil fraction.  相似文献   

7.
探讨了二甲基聚硅氧烷阳离子型乳液耐电解质稳定性的影响因素。结果表明,加入少量的非离子型表面活性剂与阳离子型乳化剂并用进行乳液聚合,可以保护乳液粒子,防止由于电解质引起的乳液粒子的相互凝聚而形成大颗粒。  相似文献   

8.
通过阴离子聚合反应合成了一种七支状聚氧丙烯/聚氧乙烯(PPO/PEO)三嵌段聚醚;考察了不同无机盐存在时对原油乳状液的破乳效果的影响;通过界面张力、浊点和界面膨胀流变性的测定探讨了其界面聚集行为和破乳作用对无机盐的依赖性.结果表明,盐溶型无机离子存在时,能提高聚醚的破乳效果,而盐析型无机离子存在时,不利于聚醚的破乳作用;温度升高破乳速度加快,但45℃时脱出的水质最清.  相似文献   

9.
黄英  刘香鸾 《应用化学》1994,11(2):44-47
探讨了二甲基聚硅氧烷阳离子型乳液耐电解质稳定性的影响因素。结果表明,加入少量的非离子型表面活性剂与阳离子型乳化剂并用进行乳液聚合,可以保护乳液粒子,防止由于电解质引的乳液粒子的相互凝聚而形成大颗粒。  相似文献   

10.
The new fluorinated acrylate emulsion was synthesized by using the intermediate perfluorous nonene and 2-hydroxyethyl methacrylate as the staring reactants via semi-continuous seeded emulsion polymerization. The structures, glass transition temperature, thermal property and water repellency of the fluorinated acrylate emulsion were characterized with FTIR, differential scanning calorimetry, thermal analysis, and contact angle meter. Influences of many factors such as the theoretical solid content, the temperature of the emulsion polymerization on the stability of the emulsion polymerization, the added amount of emulsifiers and the added amount of the initiator were studied. Results show that the stability of the emulsion polymerization is fairly good when the theoretical solid content is below 30% and the reaction temperature is 80°C and the added amount of emulsifiers and the initiator are 6.0–8.0% and 2.0% respectively. In comparison with the acylate emulsion, the thermal stability of the fluorinated acrylate emulsion is decreased but the water repellency of the fluorinated acrylate emulsion is greatly increased.  相似文献   

11.
高水相W/O型乳化膏体油膜稳定性的研究   总被引:3,自引:0,他引:3  
徐国财 《应用化学》1998,15(6):83-85
高水相W/O型乳液是指水相体积占74%以上,属于高度不稳定的分散体系[1,2].乳化炸药的问世,使这种高水相W/O型乳液有了新的实际应用.这种炸药是90%~95%重的硝酸铵盐(占水相80%~90%重)水溶液高度分散在5%~10%的油相中构成W/O型乳...  相似文献   

12.
This article discusses the effect of water fraction on the rheological properties of waxy crude oil emulsions including gel point, yield stress, viscosity, and thixotropy. The experimental results reveal that the rheological behaviors of the w/o emulsion samples all intensify with the increase of water volume fraction within 60%. Of more significance is that a correlation for w/o emulsions between yield stress and water volume fraction is put forward with an average relative error of 6.75%. In addition, some mainstream viscosity prediction models of w/o emulsions are evaluated, and Elgibaly model is the best-fit for the emulsions in this study.  相似文献   

13.
In this article, the effects of various operating factors on the surface tension, viscosity, and stability of two heavy oil types in water emulsions for pipeline transportation are studied using the Taguchi experimental design approach. The surface tension of heavy crude oil-in-water emulsion is decreased by increasing the emulsifier concentration while the stability of emulsions is increased. The viscosity and stability are increased by an increase in oil content. An increase in the salinity and mixing speed leads to an increase in the stability of emulsion.  相似文献   

14.
The objectives of this study were to examine the influence interfacial composition on environmental stresses stability of oil in water emulsions. An electrostatic layer-by-layer deposition method was used to create the multilayered interfacial membranes with different compositions: (i) primary emulsion (Soy protein Isolate); (ii) secondary emulsion (Soy protein Isolate – OSA-starch); (iii) tertiary emulsion (Soy protein isolate – OSA-starch – chitosan). Fourier transform-infrared (FTIR) and scanning electron microscopy (SEM) results confirmed the adsorption of charged polyelectrolyte onto oppositely charge polyelectrolyte-coated oil droplets. The stability of primary, secondary, and tertiary emulsions to thermal treatment (30 min at 30–90°C), pH (3–7) and NaCl (0–500 mM) were determined using ζ-potential, particle diameter, and microstructure analysis. Primary emulsions were unstable at pH 4–7, salt concentrations, and thermal treatments. Secondary emulsions were stable to creaming and droplet aggregation at pH 3–5, at ≤50 mM NaCl, and unstable at thermal treatments, whereas tertiary emulsions were stable at all salt concentrations, thermal treatments, and at pH 3–6. These results demonstrate that these polymers can be used to engineer oil in water emulsion systems and improve the emulsion stability to environmental stresses.  相似文献   

15.
The aim of the study was to determine the optimal conditions, that is, the content of sesame oil and the amount of carboxymethylcellulose, to obtain stable dispersion systems. Emulsions were stored under different temperature conditions. For this purpose, six emulsions were prepared and their stability was examined empirically using techniques including particle size analysis, optical microscopy, and the Turbiscan test. The emulsion containing 40 g of oil and 0.6 g of thickener had the highest stability. No destabilizations in whole the range of stored temperature were observed for the emulsion with that composition. Emulsion was stable as well at cool temperature as at extreme environment (40°C). Nowadays, the use of O/W emulsions based on vegetable oil is continuously increasing. To date, sesame oil has been used mainly for direct consumption. The present work indicates a novel possibility for use of sesame oil as the fat base of an emulsion system. Besides, the study gave information about parameters of long-term stability emulsion what is the key in the quality of the dispersion systems. This knowledge is necessary for the industry in order to avoid destabilizing processes occurring in a new product.  相似文献   

16.
Zeta电位和界面膜强度对水包油乳状液稳定性影响   总被引:19,自引:0,他引:19  
通过对表面活性剂、聚合物溶液和煤油体系油水界面剪切黏度和油珠的Zeta电位的测定,考察了界面膜强度和Zeta电位对水包油乳状液稳定性的影响。在煤油、表面活性剂、聚合物聚丙烯酰胺(3530S)或其氧化降解聚合物体系中,含有3530S时,界面膜强度值最大,最大值大于0.10 mN/m,Zeta电位为-18.4 mV,绝对值最大,乳状液最稳定。结果表明,油水界面膜强度和油珠表面的Zeta电位对水包油乳状液稳定性影响较大。界面膜强度和Zeta电位绝对值较大时,乳状液最稳定;当界面膜强度相差不大时,Zeta电位绝对值大的乳状液较稳定,此时双电层对乳状液稳定性起主要作用;当Zeta电位相差不大时,界面膜强度大的乳状液较稳定,此时界面膜强度对乳状液稳定性起主要作用。研究还表明,机械或氧化降解后的聚合物体系,界面剪切黏度和Zeta电位绝对值变小,乳状液稳定性变差。  相似文献   

17.
In this study, effect and correlation of alkyl chain length (C8, C10, C12, C14, and C16) and concentration of n-alkyl sulfate acid used as representative Br?nsted acid-combined-surfactant catalysts on dehydration esterification of oleic acid with 1-octanol as typical substrates are researched. CMC of the series surfactant are measured by surface tension method. The results indicate that alkyl chain length as well as concentration of catalyst plays an important role in determining conversion of esterifications. Appropriate chain length surfactant and concentration should be chosen for the combined-surfactant catalyzed reaction.  相似文献   

18.
High hydrogen-containing polymethylsiloxane(H-PDMS)/polyacrylate composite emulsion was synthesized by a drop-adding method for monomer emulsion. The effects of weight fraction of H-PDMS on the stability of composite emulsion, water resistance and heat-aging resistance of the latex membrane have been investigated. The TEM demonstrated that latex particles are a core-shell structure. By analyzing the spectrums of FTIR and 1H-NMR, it can be indicated that H-PDMS had reacted with acrylate monomer resulting chemical bond formation. The core-shell structure and chemical bond play an important role to restrain phase separation of composite emulsion and enhance the stability of the emulsion. By analyzing the surface tension, apparent viscosity and morphological structure, the results showed that the stable composite emulsion system can be obtained in which the average latex particle size was smaller than 90 nm when weight fraction of H-PDMS is below 16% (based on the weight of acrylate monomer), the stable emulsion system can be obtained in which the average latex particle size becomes larger than 90 nm when the weight fraction of H-PDMS is above 20% of the acrylate monomer. The DSC demonstrated that the Tg of pure polyacrylate is 49°C, and there is only one Tg (35°C) when the weight fraction of H-PDMS is 13%, but there are two Tg (15°C and 25°C) when the weight fraction of H-PDMS is 16%. In addition, the water resistance and heat-aging resistance of composite latex membrane enhanced gradually with the increase of amount of H-PDMS.  相似文献   

19.
Electrostatic interaction between protein and polysaccharides could influence structured liquid oil stability when emulsification is used for this purpose. The objective of this work was to structure sunflower oil forming emulsions and High Internal Phase Emulsions (HIPEs) using pea protein (PP) and xanthan gum (XG) as a stabilizer, promoting or not their electrostatic attraction. The 60/40 oil-in-water emulsions were made varying the pH (3, 5, and 7) and PP:XG ratio (4:1, 8:1, and 12:1). To form HIPEs, samples were oven-dried and homogenized. The higher the pH, the smaller the droplet size (Emulsions: 15.60–43.96 µm and HIPEs: 8.74–20.38 µm) and the oil release after 9 weeks of storage at 5 °C and 25 °C (oil loss < 8%). All systems had weak gel-like behavior, however, the values of viscoelastic properties (G′ and G″) increased with the increment of PP:XG ratio. Stable emulsions were obtained at pHs 5 and 7 in all PP:XG ratios, and at pH 3 in the ratio 4:1. Stable HIPEs were obtained at pH 7 in the ratios PP:XG 4:1, 8:1, and 12:1, and at pH 5 at PP:XG ratio 4:1. All these systems presented different characteristics that could be exploited for their application as fat substitutes.  相似文献   

20.
In this work, the water-repellent capacity of the paraffin emulsion?covered soy flour (SF) substrate has been studied. Effect of paraffin emulsion content on the structure and properties of the resulting films were studied using laser particle size distribution analyzer, water absorption test, x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and tensile testing. Study on the emulsion particle size and stability revealed that the particle size distribution and stability were strongly dependent on the pH of the system. And the optimum pH was 9.9. The incorporation of paraffin emulsion produced at pH 9.9 could markedly enhance the water resistance of films. However, the improvement was realized at the expense of decreased thermal stability and tensile strength of SF?paraffin emulsion films. The addition of paraffin emulsion could destroy the crystalline domains of soy protein and change the protein secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号