首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Micellization parameters, critical micelle concentration (cmc), degree of counterion dissociation (α), aggregation number (n), critical packing parameter, and hydrophobic core volume of Dodecylpyridinium chloride (DPC) micelles were determined in presence of varying concentrations of sodium chloride (NaCl), sodium acetate (SAc), sodium propionate (SPr), ethylammonium chloride (EACl), diethylammonium chloride (DEACl), tetraethylammonium chloride (TEACl), and propylammonium chloride (PACl) through conductometric investigations at 298.15 K. The resulting data suggests that both counter and coions affect the cmc values‐cmc depressing tendency of the salts varies in order PACl≈NaCl>EACl>DEACl>TEACl>SPr>SAc, while the degree of counterion dissociation is dependent on the nature and concentration range of the added salt. Increasing salt concentration increases the relative hydrophobic volume of the micelles and coion has not much effect on aggregation number.  相似文献   

2.
多支链烷基苯磺酸钠水溶液的表面性质   总被引:5,自引:0,他引:5  
王琳  张路  楚艳苹  赵濉  俞稼镛 《物理化学学报》2004,20(12):1451-1454
用自制的四种高纯度多支链烷基苯磺酸钠,研究了支链结构对其表面性质的影响.结果表明,随支链烷基碳数增加,临界胶束浓度降低,标准吸附自由能DGadӨ更负;但是,饱和吸附量Γmax却随支链烷基碳数增加而减小,且临界胶束浓度时的表面张力γcmc随吸附量减小而降低,表现出与一般表面活性剂不同的变化趋势.从多支链烷基苯磺酸钠的分子结构特点,解释了随支链烷基碳数增加Γmax和γcmc的变化规律,探讨了分子的独占面积(as)对Γmax及γcmc的影响.  相似文献   

3.
The effect of divalent and trivalent salts (CaCl(2), CaBr(2), MgCl(2), MgBr(2), LaCl(3), CeCl(3), La(NO(3))(3), and Ce(NO(3))(3)) on the micelle formation in C(8)-lecithin solutions was investigated using the techniques of static and dynamic light scattering. The critical micelle concentration (cmc), mean hydrodynamic radius (R(h)), gyration radius (R(g)), and weight-average molecular weight of the micelles were measured as functions of salt identity and concentration, amphiphile concentration, and temperature. It was found that the micelles in solutions of magnesium are less likely to form and less stable; their standard enthalpy is less exothermic as the ionic strength increases. On the contrary, the micelles in solutions of calcium and trivalent salts form easily, and are more stable; their standard enthalpy is also more exothermic as the ionic strength increases. Based on our model of the Gibb's free energy for the salt-added solutions, we obtained the following formula for the effect of salts on cmc: ln(cmc)'=ln(cmc)+k(1) I(1/2)+k(2)I, where (cmc)' and (cmc) are the critical micelle concentrations in salt-added and salt-free solutions, respectively, I is the ionic strength, and k(1) and k(2) are the salt effect parameters. The agreement between the formula and the experimental data for all the systems under study shows that the formula is more satisfactory than those suggested previously by other authors in describing the effect of salts on the cmc in the micellar solutions of not only zwitterionic but also nonionic surfactants. Copyright 2001 Academic Press.  相似文献   

4.
Detergent sequestration using micelles as a hydrophobic sink for dissociated drug molecules is an established technique for determination of dissociation rates. The anionic surfactant molecules are generally assumed not to interact with the anionic DNA and thereby not to affect the rate of dissociation. By contrast, we here demonstrate that the surfactant molecules sodium dodecyl sulfate (SDS), sodium decyl sulfate, and sodium octyl sulfate all induce substantial rate enhancements of the dissociation of intercalators from DNA. Four different cationic DNA intercalators are studied with respect to surfactant-induced dissociation. Except for the smallest intercalator, ethidium, the dissociation rate constants increase monotonically with surfactant concentration both below cmc and (more strongly) above cmc, much more than expected from electrostatic effects of increased counterion concentration. The rate enhancement, most pronounced for the bulky, multicationic, hydrophobic DNA ligands in this study, indicates a reduction of the activation energy for the ligand to pass out from a deeply penetrating intercalation site of DNA. The discovery that surfactants enhance the rate of dissociation of cationic DNA-intercalators implies that rate constants previously determined by micelle-sequestered dissociation may have been overestimated. As an alternative, more reliable method, we suggest instead the addition of excess of dummy DNA as an absorbent for dissociated ligand.  相似文献   

5.
The salicylate ion increases the rate of bile flow (choleretic effect) and bile salts are known to affect the colonic absorption of oxalate. Owing to this physiological relevance of salicylate and oxalate ions, critical micelle concentration (cmc) values of sodium deoxycholate (NaDC) were determined in aqueous sodium oxalate, sodium salicylate, and sodium chloride solutions by using surface tension, fluorescence, and EMF methods. The results indicate, besides a counterion effect, the influence of coanions on the cmc. In the range from 25 to 40 °C, cmc increases almost linearly with temperature. In the temperature range from 30 to 40 °C, the counterion binding constant β of NaDC micelles has the same value (0.17±0.01) in the presence of sodium chloride and sodium salicylate. On the other hand, in sodium oxalate solution β=0.05±0.02 when oxalate concentration is less than or equal to c* and β=0.48±0.04 above c*, where c*≈0.038 mol kg(-1). EMF measurements also supported this type of counterion binding to NaDC micelles in sodium oxalate solutions. In sodium oxalate solution, at c* a change in the shape of deoxycholate micelles is expected to take place. Salicylate, oxalate, and chloride coanions have a similar effect on the adsorption of NaDC. This study reveals that the choleretic effect of salicylate is not due to the influence of salicylate ions on the micellization of NaDC.  相似文献   

6.
1H NMR self-diffusion coefficient, spin–spin relaxation and two-dimensional nuclear Overhauser enhancement spectroscopy measurements of sodium dodecyl sulfate (SDS) in poly(ethylene glycol) (PEG) aqueous solution show that SDS molecules start to self-aggregate at a concentration of 3.3 mM, which is well below the normal critical micellar concentration (cmc). SDS micelles are formed when the cmc is reached with PEG solubilized in their hydrophobic micellar cores. Electronic Publication  相似文献   

7.
This paper demonstrates a method of using a pH meter to determine the micellar dissociation concentration (mdc) and the. critical micellar concentration (cmc) of eight bile salt samples: sodium cholate (NaC), sodium deoxycholate (NaDC), sodium glycocholate (NaGC), sodium glycodeoxycholate (NaGDC), sodium glyco-chenodeoxycholate (NaGCDC), sodium taurocholate (NaTC), sodium taurodeoxycholate (NaTDC) and sodium taurochenodeoxycholate (NaTCDC). The experiments were performed by diluting the bile salt solutions with freshly distilled water and following the pH changes with a hydrogen ion electrode at 25°C. One break appears in most of the pH-concentration plots of the bile salt solutions, signifying mdc. However, two breaks appear for NaC and NaDC samples, signifying mdc and cmc. The mdc and cmc values are in good agreement with values determined by surface tension and turbidity methods and with data reported in the literature. The method described in this paper is quick, simple and requiring no sample purification. It is the only method which can be used to determine mdc and cmc simultaneously.  相似文献   

8.
Isothermal titration calorimetry (ITC) was used to determine the critical micelle concentration (cmc) and the thermodynamic parameters associated with the demicellization of sodium oleate (NaO) and mixed micelles composed of the bile salt (BS) sodium cholate (NaC) or sodium deoxycholate (NaDC), respectively, and NaO at a molar ratio of 5:2. The influence of the ionic strength (pure water and 0.1 M NaCl at pH 7.5) as well as that of the temperature (10-70 degrees C) were analyzed. For NaO, two cmc's were detected, indicating a two-step aggregation process, whereas only one cmc was observed for the two BSs. A single aggregation mechanism is also evident for the demicellization of mixed micelles (BS/NaO 5:2). Increasing the ionic strength induces the well-known decrease of the cmc. The cmc shows a minimum at room temperature. The cmc(mix) of the mixed micelles was analyzed using models assuming an ideal or nonideal mixing behavior of both detergents. The thermodynamic parameters describing the enthalpy (deltaHdemic), entropy (deltaSdemic), and Gibbs energy change (deltaGdemic), as well as the change in heat capacity (deltaCp,demic) for demicellization, were obtained from one ITC experiment. From the temperature dependence of deltaHdemic, the change of the hydrophobic surface area of the detergents from the micellar into the aqueous phase was derived. In all cases, the deltaCp,demic values are positive. In addition, the temperature dependence of the size of the formed aggregates was studied by dynamic light scattering (DLS). DLS indicated two populations of aggregates in the mixed system, small primary micelles (0.5-2 nm), and larger aggregates with a hydrodynamic radius in the range of 50-150 nm.  相似文献   

9.
Altering and modifying important physicochemical properties of aqueous surfactant solutions is highly desirable as far as potential applications of such systems are concerned. Changes in the properties of aqueous solutions of a common anionic surfactant sodium dodecyl sulfate (SDS) are assessed in the presence of a common and popular 'hydrophobic' ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)). Upon addition of up to approximately 0.10 wt% bmimPF(6), a dramatic decrease in critical micelle concentration (cmc) is accompanied by an increase in the degree of counterion dissociation (alpha) and micellar aggregation number (N(agg)) indicating micellar growth. However, in the range 0.10 wt% < or = bmimPF(6) 2.00 wt%, relatively gradual decrease in alpha and N(agg) is observed along with no change in cmc. Significantly decreased microfluidity of the aqueous SDS solutions on addition of bmimPF(6) is indicated by a fluorescence microviscosity probe 1,3-bis-(1-pyrenyl)propane which suggests partitioning of bmimPF(6) into the SDS micellar phase. Behavior of solvatochromic fluorescence probes, pyrene, pyrene-1-carboxaldehyde, and 2-(p-toluidino)naphthalene-6-sulfonate, confirms interaction, and possible complexation, between IL bmimPF(6) and anionic micellar surface. Increased solubility of bmimPF(6) with increasing SDS concentration further confirms SDS-bmimPF(6) interactions. Presence of strong electrostatic attraction between bmim(+) and anionic micellar surface is proposed to be the most dominant reason for these observations. All-in-all, unique role of a hydrophobic ionic liquid bmimPF(6) in modifying the properties of aqueous anionic sodium dodecyl sulfate is demonstrated.  相似文献   

10.
本文报告了298.1 K下甲酸钠(C_1), 乙酸钠(C_2)、丙酸钠(C_3)、丁酸钠(C_4)、戊酸钠(C_5)、已酸钠(C_6)和庚酸钠(C_7)七个盐对水溶液中乙醇、丙酮和乙腈三个溶质的活度系数的影响。实验方法是, 固定水溶液中乙醇、丙酮和乙腈的浓度(摩尔分数约为0.05), 用气相色谱法检测不同盐浓度下平衡气相中溶质分压的变化, 从而得出溶质的盐效应活度系数γ。本文给出了一个可以连续取样的气液平衡装置的设计。由实验结果可见, 不同碳链大小的脂肪酸根离子的盐效应作用差别很大。C_1、C_2的盐效应主要由于静电作用; 对C_3、C_4盐, 除静电作用外,它们的疏水基与溶质疏水基的相互作用对盐效应有显著影响; C_5、C_6和C_7的盐效应则反映了疏水离子的特色, 疏水水化、疏水相互作用、疏水离子形成的聚集体与不同官能团的特定相互作用等几项因素, 导致儿个溶质盐效应的差异。  相似文献   

11.
The critical micelle concentration (cmc) of an amphiphilic drug amitriptyline hydrochloride (AMT) was determined in the presence of varying amounts of inorganic salts (NaF, NaCl, NaBr, LiCl, KCl), urea and thiourea over the temperature range 293–308 K by conductometric and dye solubilization (ambient) techniques. The cmc values showed an inverted U-shaped behavior with temperature. In the presence of salts the cmc decreased which is explained on the basis of the nature and ion size. Urea and thiourea, at low concentrations (0.2 mM urea and 0.1 mM thiourea), decreased the cmc, whereas, at high concentrations, increase was observed with both the additives. Relevant thermodynamic parameters were also evaluated and discussed.  相似文献   

12.
A polymerizable cationic gemini surfactant, [CH(2)=C(CH(3))COO(CH(2))(11)N(+)CH(3))(2)CH(2)](2).2Br(-), 1 has been synthesized and its basic interfacial properties were investigated (in water and in the presence of 0.05 M NaBr). For comparison, the properties of monomeric surfactant corresponding to 1, CH(2)=C(CH(3))COO(CH(2))(11)N(+)(CH(3))(3).Br(-), 2, were also investigated. Parameters studied include cmc (critical micelle concentration), C(20) (required to reduce the surface tension of the solvent by 20 mN/m), gamma(cmc) (the surface tension at the cmc), Gamma(cmc) (the maximum surface excess concentration at the air/water interface), A(min) (the minimum area per surfactant molecule at the air/water interface), and cmc/C(20) ratio (a measure of the tendency to form micelles relative to adsorb at the air/water interface). For the polymerizable gemini surfactant, 1, the methacryloxy groups at the terminal of each hydrophobic group in a molecule have no contact with the air/water interface in the monolayer, whereas for the corresponding monomeric surfactant, 2, the methacryloxy group contacts at the interface forming a looped configuration like a bolaamphiphile. Polymerized micelles of the gemini surfactant are fairly small monodisperse and spherical particles with a mean diameter of 3 nm.  相似文献   

13.
The effects of a series of aromatic anions, so-called hydrotropes, on characteristic solution properties of a family of ammonium gemini surfactants with dodecyl chains were explored. The stoichiometric addition of the organic salts to the geminis can result in clear solutions or in phase separation/precipitation, depending on the detailed nature of the added counterions and on the spacer group of the gemini surfactant. Many organic anions induce synergistic effects, strongly reducing the critical micellization concentration (cmc) and the surface tension at the cmc. Furthermore, a number of combinations of organic anions and geminis exhibit thickening of their aqueous solutions. The effects of the added salts are strongly enhanced for the gemini surfactants compared to the monomeric analogue N-dodecyl-N,N,N-trimethylammonium chloride. Even anions such as benzoate may be effective for thickening, and viscoelastic solutions can be obtained with salicylate despite the relatively short alkyl chains.  相似文献   

14.
多烷基苯磺酸钠水溶液的表面性质   总被引:8,自引:0,他引:8  
研究了多烷基苯磺酸钠的结构, 特别是侧链碳原子数的增加, 对其表面活性的影响, 并与其它烷基苯磺酸钠进行了比较. 结果表明, 随着苯环上侧链碳原子数的增加, 多烷基苯磺酸钠的临界胶束浓度(cmc)降低, 但侧链上CH2降低cmc的程度远小于主链上CH2的作用. 当侧链碳原子数增加时, 多烷基苯磺酸钠的饱和吸附量(Γmax)降低, 表现出与主链不同的变化规律. 从多烷基苯磺酸钠的结构解释了cmc和Γmax的变化规律.  相似文献   

15.
通过六氟丙烯三聚体(全氟壬烯)氧基苯磺酸钠(C9F17OC6H4SO3Na, OBS)与阳离子碳氢表面活性剂CnNR[CnH2n+1N(CH3)3Br, CnNM, n=8, 10和CnH2n+1N(CH2CH3)3Br, CnNE, n=8, 10, 12]复配, 研究了OBS与CnNR的摩尔比、 CnNR疏水链长及CnNR亲水基团大小对此类阴、 阳离子碳氟-碳氢表面活性剂混合体系的临界胶束浓度(cmc)、 最低表面张力(γcmc)、 总饱和吸附量(Γtm)及极限分子面积(Amin)的影响. 结果表明, 通过与CnNR复配, OBS的cmc和γcmc均大幅下降, 达到了全面增效的结果. 不同摩尔比的OBS-C8NE混合体系中, 摩尔比为1:1时表面活性最好, cmc和γcmc均最小; 偏离等摩尔比时, OBS过量时混合体系的cmc小于C8NE过量时混合体系的cmc, 但γcmc相差不大. 与单体系相比, OBS-C8NE混合体系的Γtm明显增大、 Amin明显变小. OBS与不同疏水链长的CnNE复配时, cmc的变化规律为C8NE>C10NE>C12NE, 表明CnNE疏水链长的增加能降低混合体系的cmc. 通过比较CnNM和CnNE(n=8, 10)的表面活性发现, 改变混合体系中CnNR的亲水基团大小对混合体系的表面活性无明显影响.  相似文献   

16.
We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.  相似文献   

17.
In the present study we report the micellization behavior of imipramine hydrochloride(IMP)in absence and presence of different concentrations of inorganic salts(LiCl,NaF,NaCl,NaBr,and KCl)and ureas(urea and thiourea)over the temperature range from 288.15 to 303.15 K.The critical micellization concentrations(cmc)of drug and drug+additive systems were determined by conductometric technique. With increasing temperature the cmc first increases then decreases.Maximum cmc values were obtained at 293.15 K with or without additives.In presence of inorganic salts the cmc value decreases which is explained on the basis of nature and ion size of the added ion.Urea and thiourea also decrease the cmc at low concentrations(0.2 mmo·lL -1 urea and 0.1 mmo·lL -1 thiourea),but,at higher concentrations,increase in cmc is observed.The related thermodynamic parameters are also evaluated and discussed.  相似文献   

18.
Following a previous investigation on partitioning of some macrocycle compounds in sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) aqueous solutions and their effect on the micellar structure, a small-angle neutron scattering (SANS) study has been performed at fixed surfactant content (0.20 mol/L) and varying macrocycle concentrations from 0.20 up to 1.0 mol/L. Conductivity measurements have been also performed in order to evaluate the effect of the presence of macrocycles on the critical micellar concentration (cmc) of the two surfactants. SANS experimental data were fitted successfully by means of a core-plus-shell monodisperse prolate ellipsoid model. It has been found that 1,4,7,10,13,16-esaoxacyclooctadecane (18C6) and 4,7,13,16-tetraoxa-1,10-diazacyclooctadecane (22) do not interact with DTAB micelles whereas their sodium complexes interact with SDS aggregates and partially localize, as a consequence of electrostatic interaction, on the micellar surface or in the Stern layer. 2,5,8,11,14,17-Hexaoxabicyclo[16.4.0] dicosane (B18C6), as a consequence of the increased hydrophobic character with respect to 18C6, interacts with DTAB hydrocarbon chains and partially localizes in the inner part of micelles. This finding has been successfully used to justify the higher amount of B18C6 compared to the 18C6 one found in the SDS micellar phase. The substituted crown ether has been found localized both on the micelle surface via complex formation and in the inner part of micelles as a consequence of the increased hydrophobic character. For all systems, the aggregate size primarily decreases with the amount of macrocycle in the micellar phase. The interpretation of cmc trends as a function ofmacrocycle concentration gives information on its distribution between micellar and aqueous phases that is in line with SANS results.  相似文献   

19.
Water-soluble complexes between sodium poly(isoprene-b-methacrylate) (NaIMA) amphiphilic block copolymer micelles and two cationic surfactants with different hydrophobic tail lengths, namely, dodecyltrimethylammonium bromide (DTMAB) and octyltrimethylammonium bromide (OTMAB), were prepared by mixing individual aqueous solutions of block copolymers and surfactants. The complexes were characterized in terms of size, overall charge, and micropolarity by dynamic light scattering, zeta-potential measurements, and fluorescence spectroscopy. Properties of the systems were investigated as a function of surfactant concentration and surfactant type and state in the initial solutions, as well as temperature. Experiments reveal surfactant complexation at the coronal sodium poly(methacrylate) (NaMA) chains, followed by an increase in mass and a decrease in size of the micelles. Complexation of individual surfactant micelles was observed when the DTMAB concentration in the starting solutions was higher than the surfactant cmc. The complexes show a temperature dependence of their dimension due to the hydrophobic effect.  相似文献   

20.
A series of new cationic surfactants, bis-quaternary ammonium dibromides, were synthesized. The properties of these surfactants were characterized by surface tension measurements, conductivity study, and dynamic light scattering. The surface properties, such as surface excess concentration, Gamma(cmc), surface area demand per molecule, A(min), efficiency in surface tension reduction, pC(20), the effectiveness of surface tension reduction, gamma(min), critical micelle concentration, cmc, and standard free energy of micellization, DeltaG(mic)(0) and DeltaG(ads)(0), were obtained by means of surface tension measurements. The antielectrostatic properties were investigated by measuring the surface resistance, the half-charge decay time, and the maximum voltage induced on polyethylene films and propylene unwoven fabrics. Critical micellar concentrations (cmc) of investigated salts were much lower than those of the monomeric salt DTAC. The results obtained in this work were compared to analogous bis-quaternary ammonium dichlorides and well-known gemini cationic surfactants. It was found that the type of counterion had an impact on the values of the micelle ionization degree and the hydrodynamic diameters. Larger aggregates were found for bis-quaternary ammonium dibromides, which had smaller values of the ionization micelle degree than bis-quaternary ammonium dichlorides. Moreover, the antielectrostatic effect strongly depended on the kind of counterion. All investigated salts had very good antistatic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号