首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of poly(vinyl acetate) with well-controlled structure has received a great deal of interest in recent years because of a large number of developments in living radical polymerization techniques. Among these techniques, the use of reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization has been employed for the controlled polymerization of vinyl acetate due to the high susceptibility of this monomer towards chain transfer reactions. Here, a novel water-soluble N,N-dialkyl dithiocarbamate RAFT agent has been prepared and employed in the emulsion polymerization of vinyl acetate. The kinetic results reveal that the polymerization nucleation mechanism changes from homogeneous to micellar and RAFT-generated radicals can change the kinetic behavior from conventional emulsion polymerization to living radical polymerization. At higher concentrations of the modified RAFT agent, as a result of an aqueous phase reaction between RAFT and sulfate radicals, relatively more hydrophobic radicals are generated, which favors entry and propagation into micelles swollen with monomer. This observation was determined from the investigation of the polymerization rate and measurements of the average particle diameter and the number of particles per liter of the aqueous phase. Molecular weight analysis also demonstrated the participation of the RAFT agent in the polymerization in such a way as to restrict chain transfer reactions. This was determined by examining the evolution of polymer chain length and attaining higher molecular weights, even up to 50?% greater than the samples obtained from the conventional emulsion polymerization of vinyl acetate in the absence of the synthesized modified RAFT agent.  相似文献   

2.
To accelerate the biodegradability of poly(vinyl acetate)-based emulsions, emulsion copolymerizations of vinyl sugars, including triacetylated N-acetyl-D-glucosamine (GlcNAc)-substituted 2-hydroxyethyl methacrylate (GlcNAc(Ac)3-substituted HEMA), glucose-substituted HEMA (GEMA) and 6-O-vinyladipoyl-D-glucose (6-O-VAG) with vinyl acetate (VAc), were carried out using poly(vinyl alcohol) as an emulsifying agent in the presence of poly[(butylene succinate)-co-(butylene adipate)] [poly(BS-co-BA)]. Copolymerization with GEMA produced a stable emulsion and that with 6-O-VAG also produced a homogeneous emulsion. Their biodegradation tests indicated that PVAc main chain scission was accelerated by copolymerization with vinyl sugars.  相似文献   

3.
聚醋酸乙烯酯乳液冻融稳定改性的机理   总被引:25,自引:0,他引:25  
冻融稳定性;聚乙烯醇缩甲醛;保护胶体;聚醋酸乙烯酯乳液冻融稳定改性的机理  相似文献   

4.
ESR measurements of transient radicals during redox polymerization of various vinyl esters in aqueous solutions have been made by using the rapid-mixing flow method. The initiation was by means of hydroxyl and amino radicals from the systems titanous chloride-hydrogen peroxide and titanous chloride-hydroxylamine, respectively. The well resolved hyperfine structures obtained at monomer concentrations of about 0.05 mole/1. are unambiguously assigned to the monomer radicals formed by addition of initiator radicals to monomers. At higher monomer concentrations, additional weak signals attributed to the growing polymer radicals were observed. The effect of reaction conditions on the signal intensity has been studied in particular for vinyl acetate. The coupling constants of monomer radicals from various vinyl esters (acetate, propionate, butyrate, crotonate, and isopropenyl acetate) were obtained and the spin densities calculated. From the ESR spectra, the monomer radicals have a conformation with the substituent R (R = HO or NH2) of R? CH2? CH(OCOR′) locked in a position above or below the radical plane. This is tentatively interpreted as due to formation of intramolecular hydrogen bonds to ring structures or complexes with titanium ions. In addition, hydrogen abstraction reactions of some model compounds for poly(vinyl acetate) have been briefly studied in relation to chain transfer and grafting reactions.  相似文献   

5.
The semicontinuous emulsion polymerization of vinyl acetate has been studied. Poly(vinyl alcohol) as a protective colloid and ethoxylated cetyl alcohol as a coemulsifier were used. The conversion and particle diameter were affected by the stirring speed and the coemulsifier distribution between initial reactor charge and continuously introduced monomer. The amount of unreacted monomer oscillates with time.  相似文献   

6.
Kinetic aspects of the vinyl acetate ab initio batch emulsion polymerization using poly(vinyl alcohol) to produce polymer nanoparticles are studied. The initial nucleation step is followed by limited coagulation and then by the generation of new particles. It seems that this is the first report of secondary nucleation phenomenon occurring in the system under study in batch mode. To explain this phenomenon, a mathematical model that allows to determine whether certain polymerization conditions and the presence/absence of a steric barrier, can lead or not to significant secondary nucleation is developed. It is deduced that the effect of such steric barrier on the free‐radical entry process plays a key role on the observed phenomenon.  相似文献   

7.
Miscibility of cellulose acetate with vinyl polymers   总被引:2,自引:0,他引:2  
Binary blend films of cellulose acetate (CA) with flexible syntheticpolymers including poly(vinyl acetate) (PVAc), poly(N-vinyl pyrrolidone) (PVP),and poly(N-vinyl pyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] were preparedfrommixed polymer solutions by solvent evaporation. Thermal analysis by DSC showedthat CA of any degree of substitution (DS) was not miscible with PVAc, but CAwith DS less than 2.8 was miscible with PVP to form homogeneous blends. Thestate of mixing in CA/P(VP-co-VAc) blends was affected not only by the DS of CAbut also by the VP/VAc copolymer composition. As far as CAs of DS<2.8 andP(VP-co-VAc)s with VP contents more than ca. 25 mol% were used,theCA/copolymer blends mostly showed a miscible behaviour irrespective of themixing ratio. FT-IR measurements for the miscible blends of CA/PVP andCA/P(VP-co-VAc) revealed the presence of hydrogen-bonding interactions betweenresidual hydroxyls of CA and carbonyls of N-vinyl pyrrolidone units, which maybe assumed to largely contribute to the good miscibility.  相似文献   

8.
Chain transfer to polymer in emulsion polymerizations of acrylate monomers and vinyl acetate has been studied using 13C NMR spectroscopy to elucidate the chemistry by which chain transfer occurs and to quantify the mol% branches resulting from the reaction. In emulsion polymerizations of n-butyl acrylate, ethyl acrylate and methyl acrylate, chain transfer to polymer proceeds via abstraction of hydrogen atoms from backbone tertiary C-H bonds and typically gives rise to 2-4 mol% branches in the polymers obtained at complete conversion, the level of branching increasing with reaction temperature. For these acrylates, there is no evidence for a significant difference between the extent of chain transfer to polymer. In emulsion polymerizations of vinyl acetate, chain transfer to polymer proceeds mainly via H-abstraction from methyl side-groups, though there is a small contribution from abstraction at backbone tertiary C-H bonds. The levels of branching that result are substantially lower than in acrylate emulsion polymerizations, typically being in the range 0.6-0.8 mol% in the polymers obtained at complete conversion. The level of branching increases with temperature and as the degree of monomer starving (and hence instantaneous conversion) increases. Emulsion copolymerization of vinyl acetate with a small amount (5-20 wt%) of n-butyl acrylate gives rise to a significant increase in the level of branching (to values around 1.3-1.6 mol%), which results predominantly from H-abstraction of backbone tertiary C-H bonds in n-butyl acrylate repeat units by propagating radicals with vinyl acetate end units.  相似文献   

9.
Summary The adsorption of polar groups at the polymer melt/mould interface is detected by chemical analysis. Vinyl alcohol groups and vinyl acetate groups (after hydrolysis) react with heptafluoro-butanoic acid chloride to attach a fluorine-containing molecular group to the surface. By measuring fluorine and other elements with XPS the surface composition is determined. On a gold substrate vinyl alcohol groups are adsorbed in a copolymer of vinyl chloride, vinyl acetate and vinyl alcohol. If a vinyl chloride-vinyl acetate copolymer is compression moulded against gold, the polymer surface energy is increased by adsorption of vinyl acetate groups. Subsequent relaxation, after removal of the substrate, leads to slow desorption of vinyl acetate groups. At the interface of the vinyl chloride-vinyl acetate copolymer with nickel or aluminium the polymer is oxidized.
Zusammenfassung Die Adsorption von polaren Gruppen an der Polymerschmelze/Substrat — Grenzfläche wird chemisch analysiert. Vinylalkohol- und Vinylazetatgruppen in Oberflächen von Copolymeren reagieren (nach Hydrolyse) mit Heptafluorbuttersäurechlorid. Mit XPS (X-ray-Photoelectron-Spectroscopy) messen wir die Fluormenge, um die Oberflächenzusammensetzung zu bestimmen. In PVC/Ac/Alc Copolymerem adsorbieren Vinylalkoholgruppen an ein Goldsubstrat. Die Zunahme der Oberflächenenergie von PVC/Ac durch Schmelzen auf einer Goldoberfläche und die spätere Relaxation, werden verursacht durch Adsorption und Desorption von Vinylazetateinheiten. Bei Gebrauch von Nickel oder Aluminium wird die Polymeroberfläche oxydiert.


With 3 tables  相似文献   

10.
Well‐defined poly(vinyl acetate) macroinitiators, with the chains thus end‐capped by a cobalt complex, were synthesized by cobalt‐mediated radical polymerization and used to initiate styrene polymerization at 30 °C. Although the polymerization of the second block was not controlled, poly(vinyl acetate)‐b‐polystyrene copolymers were successfully prepared and converted into amphiphilic poly(vinyl alcohol)‐b‐polystyrene copolymers by the methanolysis of the ester functions of the poly(vinyl acetate) block. These poly(vinyl alcohol)‐b‐polystyrene copolymers self‐associated in water with the formation of nanocups, at least when the poly(vinyl alcohol) content was low enough. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 81–89, 2007  相似文献   

11.
Two series of vinyl alcohol-vinyl acetate copolymers were prepared by homogeneous and heterogeneous acetylation of the same precursor poly(vinyl alcohol). Their intramolecular monomer distributions were analyzed by IR spectrometry, calorimetry, and differential thermal analysis. The results show a more blocky distribution for the heterogeneously prepared copolymers. The properties of these (co)polymers in dilute aqueous solution were determined by means of viscometry. Whereas the copolymer-solvent interaction parameter of the homogeneously acetylated, random copolymers hardly varied with acetate content, a definite minimum was found for the blocky copolymers at about 7 mole% vinyl acetate. These findings were attributed to the incompatibility of dissimilar sequences, which sharply decreases with decreasing vinyl acetate sequence length. Up to about 17 mole% vinyl acetate content, the solvent quality for the copolymers is at least as good as for poly(vinyl alcohol). In addition, the dilute solution properties of the samples were established in water saturated with 1-butanol. For copolymers with up to about 17 mole% vinyl acetate, at 25°C this mixture is a better solvent than water. The highest increase in solvent quality was found for the homopolymer, whereas the increase diminished with acetate content, irrespective of the intramolecular vinyl acetate distribution. These findings are explained in terms of preferential adsorption of 1-butanol onto the (co)polymer backbone due to hydrophobic interactions and prevention of this process by the bulky acetate groups.  相似文献   

12.
The introduction of peroxide groups onto carbon black surface was achieved through the trapping of the peroxide radicals formed by the decomposition of polymeric peroxide, such as poly(tetraethylene glycol peroxyadipate) (ATPPO), and bis-peroxide, such as 1,1′-bis (t-butyldioxy)cyclohexane (Perhexa-C), by the surface: the amount of peroxide groups introduced onto carbon black surface by the treatment with ATPPO and Perhexa-C were determined to be 0.07 mmol/g and 0.12 mmol/g, respectively. The polymerization of vinyl monomers with positive e-value, such as methyl methacrylate and 2-hydroxyethy methacrylate, was successfully initiated by the peroxide groups introduced onto carbon black surface. During the polymerization, the corresponding polymers were effectively grafted onto the surface as a result of the propagation of polymer from the surface radicals formed by decomposition of the peroxide groups. The polymerization of vinyl monomers with negative e-value, such as styrene and vinyl acetate, however, was scarcely initiated by the peroxide groups on carbon black. This may be due to the fact that surface active radicals, which were formed by the hydrogen abstraction from carbon black by fragment radicals, inhibit the polymerization of vinyl monomers with negative e-value. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The vinylation of 3-pyridazones through a step involving the production of 2-hydroxy-and 2-chloroethyl-substituted compounds with subsequent dehydrochlorination, as well as vinylation by means of vinyl acetate, in all cases leads only to N-vinyl derivatives. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 394–397, March, 1980.  相似文献   

14.
Three ethylene/vinyl acetate copolymers (3.5, 12.0 and 18.8 mol% VA; average melt index 8.5 g/10 min) were transformed into ethylene/vinyl alcohol copolymers and ethylene/vinyl alcohol/vinyl acetate terpolymers by homogeneous saponification. The reaction rate increased with mol% VA. This feature originated in the reactivity differences beteen vicinal and isolated VA functions. Simultaneous steric and polarity effects caused the reaction rate differences. 1H-NMR, i.r., dielectric measurements and additional saponification reactions confirmed the difference of reactivity.  相似文献   

15.
Complete and partial alcoholyses of ethylene–vinyl acetate (E–VA) copolymers yield ethylene–vinyl alcohol (E–VOH) copolymers and ethylene–vinyl acetate–vinyl alcohol (E–VA–VOH) terpolymers, respectively. From the 220-MHz proton NMR spectra of E–VOH copolymers the stereoregular and chemical sequence distributions of the comonomers can be readily determined. Partially hydrolyzed E–VA polymers were acetylated with perdeuterated acetic anhydride. The monomer distributions in the terpolymers were then quantitatively determined by examining the proton spectra of the derived products. It was found that alcoholysis of E–VA polymers occurs preferentially at VA units which have neighboring VA groups.  相似文献   

16.
Hydroxypropylmethylcellulose and Poly (vinyl alcohol) blend microspheres were prepared by water in oil emulsion method and Ciprofloxacin Hydrochloride (CFHcl) was loaded into the interpenetrating polymer network (IPN) microspheres that are crosslinked with glutaraldehyde (GA). Blend microspheres were characterized using Fourier transform infrared Spectroscopy (FT-IR), Scanning electron microscopy, X-ray diffraction and Differential scanning Calorimetry. FTIR spectra results confirmed crosslinking reaction between –OH groups of Poly (vinyl alcohol) and –CHO groups of glutaraldehyde. Scanning electron micrograph showed the formation of plain, uniform and smooth microspheres. X-ray diffraction and thermal studies of plain and drug loaded microspheres indicates that the drug is dispersed at the molecular level in the IPN matrix. In vitro dissolution experiments were performed in pH 7.4 buffer medium at 35 °C which indicates a sustained and controlled release of ciprofloxacin hydrochloride (CFHcl) from the IPN microspheres up to 10 h.  相似文献   

17.
本文综述了醋酸乙烯(VAc)单体的活性/可控自由基聚合研究进展.醋酸乙烯是一种重要的单体,是生产聚醋酸乙烯(PVAc)和聚乙烯醇(PVA)的原料.传统的自由基聚合方法如溶液、乳液、悬浮和分散等都可以用来实现VAc的聚合,得到不同分子量的PVAc和PVA.由于醋酸乙烯增长自由基的高活性,存在向聚合物链的链转移从而导致聚合物的分子量分布比较宽,为了得到分子量分布更窄的聚合物,活性可控聚合方法也被用来实现VAc的聚合.  相似文献   

18.
 二乙烯苯分别与甲基丙烯酸甲酯、丙烯酸甲酯、顺丁烯二酸二甲酯、乙酸烯丙酯、丙烯腈、甲基乙烯基甲酮和N-乙烯基吡咯烷酮进行悬浮共聚合,制备了一系列交联度为40%的大孔吸附树脂。并表征了这些树脂的结构,测定了树脂对绞股蓝皂甙的吸附量。结果说明,所用单体的极性等因素对树脂的孔结构及吸附量有重要影响。  相似文献   

19.
二乙烯苯分别与甲基丙烯酸甲酯、丙烯酸甲酯、顺丁烯二酸二甲酯、乙酸烯丙酯、丙烯腈、甲基乙烯基甲酮和N-乙烯基吡咯烷酮进行悬浮共聚合,制备了一系列交联度为40%的大孔吸附树脂。并表征了这些树脂的结构,测定了树脂对绞股蓝皂甙的吸附量。结果说明,所用单体的极性等因素对树脂的孔结构及吸附量有重要影响。  相似文献   

20.
Summary: In this study, the emulsion homopolymerization system containing vinyl acetate and styrene, potassium persulfate, and a new cationic surfactant was studied in the classical glass emulsion polymerization reactor. The effects of new polymeric emulsifier on the physicochemical properties of obtained vinyl acetate and styrene latex properties were investigated depending on surfactant percentage in homopolymerizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号