首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The surface tensions of aqueous lithium bromide(LiBr)with additive(2-ethyl-1-hexanol and 1-Octanol)have been measured by using a Wihelmy plate method,and the enhancement effect of the additives on the absorption of steam into aqueous LiBr in a static pool has been studied by a real-time type laser holographic visualization method. The experimental results show that both of liquid additive and vapor additive can decrease the surface tensions of aqueous LiBr significantly,vapor additive not only can trigger the Marangoni convection at the absorption interface just like the liquid additive,but can bring about better enhancement effect on the absorption performance than that liquid additive can. The enhancement mechanism of additive on absorption has been concluded that both liquid additive and vapor additive can be adsorbed by aqueous LiBr at the liquid-vapor-interface from the liquid side and the vapor side respectively,which result in surface tension gradient,and then cause Marangoni convection at the interface which enhances the heat and mass transfer performance during the absorption process.  相似文献   

2.
In this work we study diffusion interactions among liquid droplets growing in stochastic population by condensation from supersaturated binary gas mixture. During the postnucleation transient regime collective growth of liquid droplets competing for the available water vapor decreases local supersaturation leading to the increase of critical radius and the onset of coarsening process. In coarsening regime the growth of larger droplets is prevailing noticeably broadening the droplet size-distribution function when the condensation process becomes more intensive than the supersaturation yield. Modifications in the kinetic equation are discussed and formulated for a stochastic population of liquid droplets when diffusional interactions among droplets become noteworthy. The kinetic equation for the droplet size-distribution function is solved together with field equations for the mass fraction of disperse liquid phase, mass fraction of water vapor component of moist air, and temperature during diffusion-dominated regime of droplet coarsening. The droplet size and mass distributions are found as functions of the liquid volume fraction, showing considerable broadening of droplet spectra. It is demonstrated that the effect of latent heat of condensation considerably changes coarsening process. The coarsening rate constant, the droplet density (number of droplets per unit volume), the screening length, the mean droplet size, and mass are determined as functions of the temperature, pressure, and liquid volume fraction.  相似文献   

3.
Microchannel (MC) emulsification is a novel technique for producing monodisperse emulsions. In this study, we investigated the effect of interfacial tension on the dynamic behavior of droplet formation with various surfactant concentrations. Interfacial tension did not affect the resultant droplet diameter in lower flow velocity ranges, but it did affect the time-scale parameters. These results were interpreted using the droplet formation mechanism reported in our previous study. At surfactant concentrations below 0.3%, the emulsification behavior was differed from that at higher surfactant concentrations. An analysis of diffusional transfer indicated that dynamic interfacial tension affects the emulsification behavior at lower surfactant concentrations. Dynamic interfacial tension that exceeded the equilibrium value led to a shorter detachment time. This resulted in stable droplet formation of monodispersed emulsions by spontaneous transformation, even at flow velocities above the predicted critical flow velocity. A previous study predicted that the droplet formation would become unstable and polydispersed larger droplets would form over critical flow velocity. Wetting of the MC with the dispersed phase at lower surfactant concentrations induced formation of larger polydispersed droplets at high flow velocities.  相似文献   

4.
The spreading of surfactant solutions over hydrophobic surfaces is considered from both theoretical and experimental points of view. Water droplets do not wet a virgin solid hydrophobic substrate. It is shown that the transfer of surfactant molecules from the water droplet onto the hydrophobic surface changes the wetting characteristics in front of the drop on the three-phase contact line. The surfactant molecules increase the solid-vapor interfacial tension and hydrophilize the initially hydrophobic solid substrate just in front of the spreading drop. This process causes water drops to spread over time. The time of evolution of the spreading of a water droplet is predicted and compared with experimental observations. The assumption that surfactant transfer from the drop surface onto the solid hydrophobic substrate controls the rate of spreading is confirmed by our experimental observations. Copyright 2000 Academic Press.  相似文献   

5.
The development of solutocapillary flows at the surfaces of air bubbles and chlorobenzene droplets was experimentally studied in nonuniform aqueous solutions of ethanol and isopropanol, which have a low surface tension and, hence, exhibit surface-active properties with respect to water. The experiments demonstrated the retardation of the onset of the development of the Marangoni concentration-induced convection relative to the moment of the contact between an inflowing surfactant (alcohol) and the surface. The critical concentration gradients (the Marangoni diffusion numbers) necessary for the initiation of mass transfer of a liquid along the interface were determined as dependent on the rate of inflow of a tongue of a more concentrated solution and the initial alcohol concentration around the bubble.  相似文献   

6.
The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.  相似文献   

7.
Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant.  相似文献   

8.
Within the framework of Gibbsian thermodynamics, a binary droplet is regarded to consist of a uniform interior and dividing surface. The properties of the droplet interior are those of the bulk liquid solution, but the dividing surface is a fictitious phase whose chemical potentials cannot be rigorously determined. The state of the nucleus interior and free energy of nucleus formation can be found without knowing the surface chemical potentials, but the latter are still needed to determine the state of the whole nucleus (including the dividing surface) and develop the kinetics of nucleation. Thus it is necessary to recur to additional conjectures in order to build a complete, thermodynamic, and kinetic theory of nucleation within the framework of the Gibbsian approximation. Here we consider and analyze the problem of closing the Gibbsian approximation droplet model. We identify micro- and Gamma-closure conjectures concerning the surface chemical potentials and excess surface coverages, respectively, for the droplet surface of tension. With these two closure conjectures, the Gibbsian approximation model of a binary droplet becomes complete so that one can determine both the surface and internal characteristics of the whole nucleus and develop the kinetic theory, based on this model. Theoretical results are illustrated by numerical evaluations for binary nucleation in a water-methanol vapor mixture at T=298.15 K. Numerical results show a striking increase in the droplet surface tension with decreasing droplet size at constant overall droplet composition. A comparison of the Gibbsian approximation with density functional calculations for a model surfactant system indicate that the excess surface coverages from the Gibbsian approximation are accurate enough for large droplets and droplets that are not too concentrated with respect to the solute.  相似文献   

9.
This work uses a minimalist model for deciphering the opposing effects of Coulomb repulsion and surface tension on the stability of electrosprayed droplets. Guided by previous observations, it is assumed that progeny droplets are ejected from the tip of liquid filaments that are formed as protrusions of an initially spherical parent. Nonspherical shapes are approximated as assemblies of multiple closely spaced beads. This strategy greatly facilitates the calculation of electrostatic and surface energies. For a droplet at the Rayleigh limit the model predicts that growth of a very thin filament is a spontaneous process with a negligible activation barrier. In contrast, significant barriers are encountered for the formation of larger diameter filaments. These different barrier heights favor highly asymmetric droplet fission because the dimensions of the filament determine those of the ejected droplet(s). Substantial charge accumulation occurs at the filament termini. This allows each progeny droplet to carry a significant fraction of charge, despite its very small volume. In the absence of a long connecting filament, relieving electrostatic stress through progeny droplet emission would be ineffective. The model predicts the prevalence of fission events leading to the formation of several progeny droplets, instead of just a single one. Ejection bursts are followed by collapse back to a spherical shape. The resulting charge depleted system is incapable of producing additional progeny droplets until solvent evaporation returns it to the Rayleigh limit. Despite the very simple nature of the model used here, all of these predictions agree with experimental data.  相似文献   

10.
Droplet emulsification in microfluidic devices involves the constant formation of fresh interfaces between two immiscible fluids. When the multiphase system contains surfactant, dynamic mass transfer of the surfactant onto the interface results in a dynamic interfacial tension different from the static interfacial tension measured in an equilibrium state. In this work, we have systematically investigated the effects of surfactant concentration and type on the dynamic interfacial tension of two different liquid-liquid two phase systems [N-hexane/water-sodium dodecyl sulfate (SDS) and N-hexane/water-cetyltrimethylammonium bromide (CTAB)] rapidly producing relatively small droplets in coaxial microfluidic devices. Dynamic interfacial tension experiments using the pendent drop method and a tensiometer were conducted, and a semiempirical equation was developed to put into context the effects of surfactants and the experimental conditions on droplet formation and dynamic interfacial tension in dynamic microchannel flows. The results presented in this work provide a more in-depth understanding of the dynamic effects of surfactants on droplet formation and the precise controllable preparation of monodispersed droplets in microfluidic devices.  相似文献   

11.
The formation of a droplet on a hygroscopic center may occur either in a barrierless way via Kohler activation or via nucleation by overcoming a free energy barrier. Unlike the former, the latter mechanism of this process has been studied very little and only in the framework of the classical nucleation theory based on the capillarity approximation whereby a nucleating droplet behaves like a bulk liquid. In this paper the authors apply another approach to the kinetics of heterogeneous nucleation on liquid binary aerosols, based on a first passage time analysis which avoids the concept of surface tension for tiny droplets involved in nucleation. Liquid aerosols of a binary solution containing a nonvolatile solute are considered. In addition to modeling aerosols formed through the deliquescence of solid soluble particles, the considered aerosols constitute a rough model of "processed" marine aerosols. The theoretical results are illustrated by numerical calculations for the condensation of water vapor on binary aqueous aerosols with nonvolatile nondissociating solute molecules using Lennard-Jones potentials for the molecular interactions.  相似文献   

12.
Experimental examinations were performed for the motion of liquid droplets suspended under the condition of neutral buoyancy (Plateau technique) in the second liquid in the presence of surfactant transfer from droplets to the surrounding liquid or surfactant transfer to the droplet from the external medium. It was shown that, at a certain initial surfactant concentration, spontaneous droplet motion arises, which has the oscillation character. When the initial concentration exceeds a certain critical value, almost steady-state translational droplet motion occurs in addition to oscillation displacements. In the case of surfactant transfer from the surrounding liquid to the droplet, only oscillation displacements of a droplet with larger amplitude take place.  相似文献   

13.
Liquid droplets on micropatterned surfaces consisting of parallel grooves tens of micrometers in width and depth are considered, and a method for calculating the droplet volume on these surfaces is presented. This model, which utilizes the elongated and parallel-sided nature of droplets condensed on these microgrooved surfaces, requires inputs from two droplet images at ? = 0° and ? = 90°--namely, the droplet major axis, minor axis, height, and two contact angles. In this method, a circular cross-sectional area is extruded the length of the droplet where the chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is assumed to occur along the side of the droplet because of the surface energy barrier to wetting imposed by the grooves--a behavior that was observed experimentally. When applied to water droplets condensed onto a microgrooved aluminum surface, this method was shown to calculate the actual droplet volume to within 10% for 88% of the droplets analyzed. This method is useful for estimating the volume of retained droplets on topographically modified, anisotropic surfaces where both heat and mass transfer occur and the surface microchannels are aligned parallel to gravity to assist in condensate drainage.  相似文献   

14.
We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50-150 mum is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100-1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a chi = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.  相似文献   

15.
This paper presents an electrical actuation scheme of dielectric droplet by negative liquid dielectrophoresis. A general model of lumped parameter electromechanics for evaluating the electromechanical force acting on the droplets is established. The model reveals the influence of actuation voltage, device geometry, and dielectric parameter on the actuation force for both conductive and dielectric medium. Using this model, we compare the actuation forces for four liquid combinations in the parallel-plate geometry and predict the low voltage actuation of dielectric droplets by negative dielectrophoresis. Parallel experimental results demonstrate such electric actuation of dielectric droplets, including droplet transport, splitting, merging, and dispending. All these dielectric droplet manipulations are achieved at voltages < 100 Vrms. The frequency dependence of droplet actuation velocity in aqueous solution is discussed and the existence of surfactant molecules is believed to play an important role by realigning with the AC electric field. Finally, we present coplanar manipulation of oil and water droplets and formation of oil-in-water emulsion droplet by applying the same low voltage.  相似文献   

16.
The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined.  相似文献   

17.
The mutual influence of two moderate-sized droplets of a dilute nonvolatile substance solution on the processes of their evaporation or condensation is theoretically analyzed under the assumption of a uniform concentration distribution inside the droplets. The conditions for the applicability of this approach are revealed. The evaporation or condensation of a droplet near a flat liquid surface is considered as a limiting case. The fluxes of water molecules to and from the surface of aqueous glycerol solution droplets occurring in air are numerically estimated depending on the droplet radii, distances between their surfaces, and air humidity. Analogous estimates are obtained for an aqueous glycerol solution droplet growing near a flat water surface.  相似文献   

18.
The electro-oxidation of electrolytically unsupported ensembles of N,N-diethyl-N',N'-dialkyl-para-phenylenediamine (DEDRPD, R = n-butyl, n-hexyl, and n-heptyl) redox liquid femtoliter volume droplets immobilized on a basal plane pyrolytic graphite electrode is reported in the presence of aqueous electrolytes. Electron transfer at these redox liquid modified electrodes is initiated at the microdroplet-electrode-electrolyte three-phase boundary. Dependent on both the lipophilicity of the redox oil and that of the aqueous electrolyte, ion uptake into or expulsion from the organic deposits is induced electrolytically. In the case of hydrophobic electrolytes, redox-active ionic liquids are synthesized, which are shown to catalyze the oxidation of l-ascorbic acid over the surface of the droplets. In contrast, the photoelectrochemical reduction of the anaesthetic reagent halothane proceeds within the droplet deposits and is mediated by the ionic liquid precursor (the DEDRPD oil).  相似文献   

19.
Ions that are observed in a mass spectrum obtained with electrospray mass spectrometry can be assumed to originate preferentially from ions that have a high distribution to the surface of the charged droplets. In this study, a relation between chromatographic retention and electrophoretic mobility to the ion distribution (derived from measured signal intensities in mass spectra and electrospray current) within electrosprayed droplets for a series of tetraalkylammonium ions, ranging from tetramethyl to tetrapentyl, is presented. Chromatographic retention in a reversed-phase system was taken as a measure of the analyte’s surface activity, which was found to have a large influence on the ion distribution within electrosprayed droplets. In addition, different transport mechanisms such as electrophoretic migration and diffusion can influence the surface partitioning coefficient. The viscosity of the solvent system is affected by the methanol content and will influence both diffusion and ion mobility. However, as diffusion and ion mobility are proportional to each other, we have, in this study, chosen to focus on the ion mobility parameter. It was found that the influence of ion mobility relative to surface activity on the droplet surface partitioning of analyte ions decreases with increasing methanol content. This effect is most probably coupled to the decrease in droplet size caused by the decreased surface tension at increasing methanol content. The same observation was made upon increasing the ionic strength of the solvent system, which is also known to give rise to a decreased initial droplet size. The observed effect of ionic strength on the droplet surface partitioning of analyte ions could also be explained by the fact that at higher ionic strength, a larger number of ions are initially closer to the droplet surface and, thus, the contribution of ionic transport from the bulk liquid to the liquid/air surface interface (jet and droplet surface), attributable to migration or diffusion will decrease.  相似文献   

20.
A model for the size-dependent surface tension gammalv(D) of liquid droplets, free of any adjustable parameter, is presented in terms of the size-dependent surface energy gammasv(D). It is found that gammalv(D) drops monotonically with the size of the droplet in the nanometer region. Modeling predictions agree with computer simulations for sodium, aluminum, and water droplets. Meanwhile, the Tolman's equation is found to be valid for small particles, and the Tolman's length is always positive and becomes longer when the droplet size is decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号