首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
ZnO–SnO2 nanoparticles were prepared by coprecipitation method; then Mg, with different molar ratios and calcination temperatures, was loaded on the coupled nanoparticles by impregnation method. The synthesized nanoparticles were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) techniques. Based on XRD results, the ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles were made of ZnO and SnO2 nanocrystallites. According to DRS spectra, the band gap energy value of 3.13 and 3.18 eV were obtained for ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles, respectively. BET analysis revealed a Type III isotherm with a microporous structure and surface area of 32.051 and 49.065 m2 g?1 for ZnO–SnO2 and Mg/ZnO–SnO2, respectively. Also, the spherical shape of nanocrystallites was deduced from TEM and FESEM images. The photocatalytic performance of pure ZnO–SnO2 and Mg/ZnO–SnO2 was analyzed in the photocatalytic removal of methyl orange (MO). The results indicated that Mg/ZnO–SnO2 exhibited superior photocatalytic activity to bare ZnO–SnO2 photocatalyst due to high surface area, increased MO adsorption and larger band gap energy. Maximum photocatalytic activity of Mg/ZnO–SnO2 nanoparticles was obtained with 0.8 mol% Mg and calcination temperature of 350°C.  相似文献   

2.
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur–Ag–SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV–visible diffuse reflectance spectra (UV–vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag–SnO2 and Cur–Ag–SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur–Ag–SnO2 shows better photocatalytic activity than that of Ag–SnO2 and SnO2. The superior photocatalytic activity of Cur–Ag–SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur–Ag–SnO2 were tested.  相似文献   

3.
A SnO2/CdS nanocomposite based on the flowerlike clusters of SnO2 nanorods was prepared and characterized with x-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and EDX analysis. The SEM and TEM images show the nanocomposite is composed of CdS nanoparticles and flowerlike clusters of SnO2 nanorods. The UV–vis spectrum of the nanocomposite displays a new absorption band in the region of 350 to 530 nm, compared with that of the flowerlike clusters of SnO2 nanorods. The measurement of optoelectronic property indicates that the photoresponse of the composite is extended into the visible region and the incident photon-to-current conversion efficiency (IPCE) of the composite is up to 6.5 in the range of 400 to 440 nm. These phenomena ought to be ascribed to the special nanostructure of the SnO2/CdS composite obtained.  相似文献   

4.
KSbWO6 was prepared by sol‐gel method. N‐doped KSbWO6 (KSbWO6–xNx) was obtained by heating KSbWO6 and urea at 400 °C. Both the compounds are characterized by powder X‐ray diffraction (XRD), TEM, SEM‐EDS, X‐ray photo electronic spectroscopy (XPS), and UV/Vis diffuse reflectance spectroscopy (UV‐DRS). A shift in the peak positions of powder XRD and XPS spectra was observed. The band gap energy (Eg) of KSbWO6 and N‐doped KSbWO6 was obtained from their diffused reflectance spectra.Eg was reduced from 3.17 eV to 2.56 eV upon nitrogen doping in KSbWO6. The reduction of the Eg is attributed to the lifting of valence band of N‐doped KSbWO6, due to the mixing of O 2p states with N 2p states. The photocatalytic activity of both the samples was studied by degradation of methylene blue (MB). The nitrogen doped KSbWO6 shows higher photocatalytic activity compared to that of KSbWO6.  相似文献   

5.
The SnO/SnO2 nanocomposites were synthesized using semisolvothermal reaction technique. These nanocomposites were prepared using different combination of solvents viz., ethanol, water, and ethylene glycol at 180 °C for 24 h. The synthesized nanocomposites were analyzed with various characterization techniques. Structural analysis indicates the formation of tetragonal phase of SnO2 for the sample prepared in ethanol, whereas for other solvent combinations, the mixture of SnO and SnO2 having tetragonal crystal structures were observed. The optical study shows enhanced absorbance in the visible region for all the prepared SnO/SnO2 nanocomposites. The observed band gap was found to be in the range of 3.0 to 3.25 eV. Microstructural determinations confirm the formation of nanostructures having spherical as well as rod-like morphology. The size of nanoparticles in ethanol-mediated solvent was found to be in the range of 5 to 7 nm. Thermogravimetric analysis indicate the weight gain around 1.3 wt% confirming the conversion of SnO to SnO2 material. The photocatalytic activity of synthesized nanocomposites was evaluated by following the aqueous methylene blue (MB) degradation. The sample prepared in ethylene glycol-mediated solvent showed highest photoactivity having apparent rate constant (Kapp) 0.62 × 10?2 min?1.  相似文献   

6.
The light-scattering effect in the dye-sensitized solar cells (DSCs) was studied by controlling TiO2 phase composition and morphology by fabrication of double-layer cells with different arrangement modes. The starting material for preparation of TiO2 cells was synthesized by an aqueous sol–gel process. X-ray diffraction and field emission scanning electron microscopic analyses revealed that TiO2 nanoparticles had particle size ranging between 18 and 44 nm. The optical property and band gap energy of TiO2 nanoparticles were studied through UV–Vis absorption. The indirect optical band gap energy of anatase and rutile nanoparticles was found to be 3.47 and 3.41 eV, respectively. The double-layer DSC made of nanostructured TiO2 film with phase composition of 78 % anatase and 22 % rutile as the under-layer and mixtures of anatase-nanoparticles and anatase-microparticles as the over-layer (i.e., NM solar cell) was shown the highest power conversion efficiency (PCE) of 6.04 % and open circuit voltage of 795 mV. This was achieved due to the optimal balance between the light scattering effect and dye sensitization parameters. Optimum light scattering of photoanode led to improve the PCE of NM double-layer solar cell which was demonstrated by diffuse reflectance spectroscopy.  相似文献   

7.
We report the exploration of the stabilization effect of the in situ generated N-alkylated DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane) cation in the family of bromoplumbates and a 1-D bromoplumbate, (Et2DABCO)2n(Pb3Br10)n (1), has been prepared by solvothermal conditions. Optical diffuse reflectance determination shows the band gap of 1 is 3.69 eV, which manifests that 1 is a wide band gap semiconductor. Compared with the band gap of bulk PbBr2 (3.84 eV), 1 exhibits 0.15 eV red shift of absorption edge. While for the reported iodo analogs of this compound, (MPDA)2n(Pb3I10)n and (Et2DABCO)2n(Pb3I10)n, they exhibit 0.53 and 0.47 eV blue shift of the energy gaps compared with the measured value of 2.30 eV for bulk PbI2, respectively. The photoluminescent study of 1 shows that it exhibits a broad emission band centered at 697 nm upon photoexcitation by 345 nm (amount to 3.59 eV). The calculated density of states manifests the theoretical value of the band gap of 1 is 3.422 eV and the origination of photoluminescence can be ascribed to the transition of bonding electrons of Br anion to the empty orbits of Pb(II) ion.  相似文献   

8.
In this study, we successfully prepared pure, mono-doped, and Ag, Mg co-doped TiO2 nanoparticles using the sol–gel method, with titanium tetraisopropoxide as the Ti source. The prepared samples were characterized by X-ray powder diffraction (XRD), specific surface area and porosity (BET and BJH) measurement, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence, and energy dispersive X-ray spectroscopy techniques. The XRD data showed that the prepared nanoparticles had the same crystals structures as the pure TiO2. Also, DRS results indicated that the band gap of co-doped photocatalyst was smaller than that of the monometallic and undoped TiO2 and that there was a shift in the absorption band towards the visible light region. Furthermore, the photocatalytic activity of the prepared catalysts was evaluated by the degradation of C.I. Acid Red 27 in aqueous solution under visible light irradiation. The results showed that Ag (0.08 mol%), Mg (0.2 mol%) co-doped TiO2 had the highest photoactivity among all samples under visible light. It was concluded that co-doping of the Ag and Mg can significantly improve the photocatalytic activity of the prepared photocatalysts, due to the efficient inhibition of the recombination of photogenerated electron–hole pairs. The optimum calcination temperature and time were 450 °C and 3 h, respectively.  相似文献   

9.
A new organically templated molybdenum oxides compound Zn2(bpe)Mo2O8 (bpe = 1,2-bis(4-pyridyl)ethane) has been hydrothermal synthesized and characterized by single X-ray analysis, element analysis, IR spectroscopy, TG analysis, diffuse reflectance UV–Vis spectra. Compound 1 shows a three-dimensional net-like structure, where the bimetallic oxide layers {ZnMoO4} were knitted together with the bpe ligands. The optical band gap for 1 was 2.5 eV, which is comparable to that of TiO2. Moreover, the photoluminescent properties of 1 have been investigated at room temperature.  相似文献   

10.
Fine layers of barium stannate nanoparticles have been synthesized by sol–gel technique with tin chloride pentahydrate (SnCl4·5H2O) and barium sulphate (BaSO4). Physico-chemical properties of barium stannate, BaxSnO2+y; x:y ≈ 1:1 were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and UV–Visible spectrophotometry technique. A growth mechanism based on the combination of particle sticking and molecule level heterogeneous growth is proposed. It has been found that the particle size of all the samples was distributed in the range 3.0–6.5 ? while optical absorption spectrum indicates that BaxSnO2+y nanoparticles have a direct band gap of 3.9 eV.  相似文献   

11.
Orchid colored powder samples of Cs2AgF4 were prepared by a solid state reaction from CsF and AgF2. The diffuse reflectance spectrum of a powder sample of Cs2AgF4 was measured in the UV/Vis region. It shows three broad bands, two in the visible‐light region at 650 nm, 500 nm and one in the UV region at 259 nm. The bands are assigned to F 2p → Ag 4d and Ag 4d → Ag 4d transitions. The optical band gap for Cs2AgF4 determined from the UV/Vis diffuse reflectance spectrum is approx. 2.17 eV. In order to interpret the observed absorptions, the theoretical absorption spectrum of Cs2AgF4 was obtained from density functional calculations.  相似文献   

12.
This work reports the reforming of bio-ethanol on chitosan–TiO2 hybrid photocatalysts at ambient temperature. The influence of chitosan composition on the photocatalytic performance of chitosan–TiO2 hybrid was studied. The hybrids were characterized by CHN elemental analysis, nitrogen adsorption–desorption isotherms, thermogravimetric analysis, diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the preparation variables used for the incorporation of chitosan on TiO2 promoted changes in the morphology, superficial area, crystal size and porosity of the photocatalyst, affecting the band gap of this semiconductor and consequently the reactivity of the chitosan–TiO2 hybrids. The catalysts were evaluated for hydrogen production from ethanol under visible light. It was demonstrated that the calcination temperature of 623 K and a chitosan content of 20% were the most appropriate preparation conditions and the resulting product displays a pore size of 1.9 nm, crystal size of 11.3 nm, BET area of 178 m2 g?1 and band gap of 2.92 eV. The calcination temperature of 623 K and incorporation of 20% of chitosan obtained the same results in the conversion rate of hydrogen in comparison to the pure TiO2 P25.  相似文献   

13.
Simultaneous TG?CDSC measurements have been used to study the solid state reaction in the system SnC2O4?C4MgCO3·Mg(OH)2·xH2O (Sn:Mg?=?0.5). The results obtained with physically prepared mixture and with mixture mechanically activated by high-energy milling are compared. Synthesis of the compound Mg2SnO4 has been attempted starting from both type of mixture: Mg2SnO4 forms by annealing the activated mixture at temperatures between 850 and 1,000?°C while it can hardly be obtained from physical mixtures even by thermal treatment at temperature as high as 1,300?C1,350?°C. Mg2SnO4 prepared by annealing the activated mixture has been characterized by diffuse reflectance FT-IR spectroscopy, modulated temperature differential scanning calorimetry, scanning electron microscopy, and specific surface area measurements (B.E.T. method).  相似文献   

14.
A novel and efficient synthesis of cuprous oxide (Cu2O) nano-octahedron was successfully prepared via a green chemie douce approach utilized a microwave hydrothermal route at low growth temperature without the presence of any surfactant. The crystalline structure of the Cu2O was characterized by several techniques like X-ray powder diffraction (XRD), Fourier transformation spectroscopy, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). XRD results indicate that the size of Cu2O nano—octahedron is 71 nm which is calculated with the help of Scherer equation, as supported by FESEM and TEM. The formation mechanism of the Cu2O octahedral was discussed. Optical absorption spectra reveal that the optical band gap of the Cu2O is controlled by quantum confinement effect. The obtained optical energy gap value E g of Cu2O octahedron was about 2.43 eV. The photoluminescence emission spectra of the Cu2O nano-octahedrons exhibit two emission peaks located at 342 and 365 nm due to the quantum effect. It is evaluated that the green chemie douce approach is a cheap and fast to synthesize Cu2O nano-octahedrons and could be potentially extended to other inorganic systems for industrial production.  相似文献   

15.
Nitrogen-doped TiO2 powders were successfully prepared by a wet method, i.e., a micro-emulsion-hydrothermal method, in different acid environments. Several characterization techniques, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra, were combined to determine the crystal phase, concentration and chemical states of the nitrogen doped in TiO2. The high photocatalytic activity of the nitrogen-doped TiO2 was evaluated through the decomposition of rhodanmine B under visible light irradiation. It was suggested that the doped nitrogen formed oxynitride (NO) and produced impurity states at higher above the valence band of TiO2. Therefore, the nitrogen doping could enhance the response of photocatalyst to the visible light and improve the photocatalytic activity because of the narrowing of band gap of TiO2.  相似文献   

16.
The present work deals with the synthesis, characterization, and photocatalytic studies of layered perovskites belonging to Aurivillius family. Layered perovskites of various chemical compositions, BiREWO6 (RE = La, Pr, Gd, and Dy), were synthesized by an ethylene glycol–assisted sol–gel method. These materials were characterized by X-ray diffraction, scanning electron microscopy–energy dispersive spectroscopy (EDS), Fourier transform infrared, Raman, and ultraviolet–visible diffuse reflectance techniques. The composition of all these materials was obtained from EDS. The unit cell lattice parameters were attained from Rietveld refinement program, Fullprof.2k, by refining the d-lines of BiREWO6. The band gap energy of these samples was obtained from the Kubelka–Munk plot. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue. The mechanistic degradation pathway of methylene blue was studied using radical quenchers.  相似文献   

17.
Powders of the Nasicon material NaTi2(PO4)3 were directly synthesized at ultra-low temperature. NaTi2(PO4)3 was obtained by mixing the initial reagents titanium hydroxide, 85 % H3PO4, and NaH2PO4·2H2O at 85 °C for 3.5 h or at 125 °C for 1.5 h. The raw materials and synthesized products were characterized for purity, crystal structure, particle size, and powder morphology by thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), and UV–visible diffuse reflectance spectroscopy. XRD results revealed that NaTi2(PO4)3 powders with rhombohedral crystal structure were synthesized at 85 and 125 °C. SEM patterns showed that the as-prepared products were agglomerated and that each of the agglomerations consisted of many small grains 50–80 nm in diameter.  相似文献   

18.
Xiaohui Li 《Acta Physico》2008,24(11):2019-2024
N-F codoped TiO2 (TONF) photocatalysts were prepared using acid catalyzed hydrolysis method from mixed aqueous solution of TiCl4 and NH4F. The photocatalytic activity of the TONF was evaluated through the degradation of phenol under both visible and UV light irradiation. X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), scanning electron microscope (SEM), and N2 adsorption isotherm were used to characterize the obtained powders. The results showed that N-F codoped TiO2 exhibited significant improvement of visible light catalytic activity. N-F codoping could improve dispersion of TiO2, inhibit particle size agglomeration, and retard phase transformation. Doped N could extend the light response of TiO2 to visible light region. In addition, narrower band gap formed by F-doping was beneficial to the high visible light photocatalytic activity.  相似文献   

19.
Transparent SnO2, nanocomposite ZrO2–SnO2 and ZrO2 thin films were prepared by sol–gel dip-coating technique. X-ray diffraction (XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. X-ray photoelectron spectroscopy (XPS) gave Zr 3d, Sn 3d and O 1s spectra of the nanocomposite ZrO2–SnO2 thin film which revealed the presence of oxygen vacancies in the nanocomposite ZrO2–SnO2 thin film. Scanning electron microscopy (SEM) observations showed that microstructure of the nanocomposite ZrO2–SnO2 thin film consists of uniform dispersion of isolated SnO2 particles in ZrO2 matrix. The band gap for the ZrO2 was estimated to be 5.51 eV and that for the nanocomposite ZrO2–SnO2 film was 4.9 eV. These films demonstrated the tailoring of band gap values which can be directly employed in tuning the band gap by simply changing the relative concentration of zirconium and tin elements. Photoluminescence (PL) spectra revealed an intense emission peak at 424 nm in the nanocomposite ZrO2–SnO2 film which indicate the presence of oxygen vacancies in ZrSnO4.  相似文献   

20.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号