首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
There have been few studies on the factors that determine the overall appearance of emulsions. Optical properties are quite important in determining the perceived quality of emulsion-based products. The overall appearance of an emulsion is determined by the way that it interacts with electromagnetic radiation in the visible region of the spectrum, for example, reflection, transmission, adsorption, and scattering. These interactions are principally determined by the characteristics of emulsion droplets (size, concentration, and refractive index). The present study aims at characterizing the optical properties and rheological behaviors of water-in-oil emulsions, especially macroemulsions. There is a decrease in the absorbance spectra as increasing glycerin ratio in aqueous phase because the difference of refractive index between oil phase and aqueous phase decreased, which improved the transparency of water-in-oil emulsion. The absorbance of linear and branched surfactant emulsions were smaller than that of alkyl modified branched surfactant emulsion. Moreover the transparency of emulsions prepared with linear and branched surfactants was much clearer than that of alkyl modified branched surfactant emulsion. The absorbance spectra also showed that low polar oil attributed to the more transparent emulsion, compared with high polar or nonpolar oil. However, these kinds of oils were not helpful to prepare transparent emulsion because the appearance of these emulsions was translucent or opaque, even if polyols in aqueous phase was 30 wt%.  相似文献   

2.
Although surfactants and particles are often used together in stabilization of aqueous emulsions, the contribution of each species to such stabilization at the oil-water interface is poorly understood. The situation becomes more complicated if we consider the nonaqueous oil-oil interface, i.e, the stabilization of nonaqueous oil-in-oil (o/o) emulsions by solid particles and reactive surfactants which, to our knowledge, has not been studied before. We have prepared Pickering nonaqueous simple (o/o) emulsions stabilized by a combination of kaolinite particles and a nonionic polymerizable surfactant Noigen RN10 (polyoxyethylene alkylphenyl ether). Different pairs of immiscible oils were used which gave different emulsion stabilities. Using kaolinite with equal volumes of paraffin oil/formamide system gave no stable emulsions at all concentrations while the addition of Noigen RN10 enhanced the emulsion stability. In contrast, addition of Noigen RN10 surfactant to silicon oil-in-glycerin emulsions stabilized by kaolinite resulted in destabilization of the system at all concentrations. For all systems studied here, no phase inversion in simple emulsion was observed by altering the volume fraction of the dispersed phase as compared to the known water-based simple Pickering emulsions.   相似文献   

3.
4.
Some factors in the preparation of triple Janus emulsions in a single-step bulk process were investigated using optical microscopy. The emulsions consisted of water, O.097 weight fraction, a commercial surfactant, Tween 80, 0.03 weight fraction, a vegetable oil (VO), 0.18 weight fraction, and a silicone oil (SO), 0.72 weight fraction. A surprising connection was found between the state of the compounds prior to mixing and the final morphology as well as stability of the emulsion. Separately adding the compounds or with the surfactant dissolved in the vegetable oil, prior to mixing, did not result in a Janus emulsion. Instead, simpler emulsions with limited stability were attained even with prolonged mixing. Storing the compounds together without mixing for two days followed by mixing resulted in a Janus emulsion in which the (VO + SO)/W/VO drops were more sparsely populated with Janus drops, and emulsion stability was limited. Finally, preparing the emulsion from the aqueous surfactant solution and the two oils gave a (VO + SO)/W/VO/SO emulsion with the W drops heavily populated by Janus drops and with improved stability.   相似文献   

5.
Rheological behavior of two crude oils and their surfactant-stabilized emulsions with initial droplet sizes ranging from 0.5 to 75 µm were investigated at various temperatures under steady and dynamic shear testing conditions. In order to evaluate the morphology and Stability of emulsions, microscopic analysis was carried out over three months and average diameter and size distribution of dispersed droplets were determined. The water content and surfactant concentration ranged from 10 to 60% vol/vol and 0.1 to 10% wt/vol, respectively. The results indicated that the rheological properties and the physical structure and stability of emulsions were significantly influenced by the water content and surfactant concentration. The crude oils behaved as Newtonian fluids over a wide range of shear rates, whereas the emulsions behaved as non-Newtonian fluids, indicating shear-thinning effects over the entire range of shear rates. The viscosity, storage modulus and degree of elasticity were found to be significantly increased with the increase in water content and surfactant concentration. The maximum viscosity was observed at the point close to the phase inversion point where the emulsion system changes from water-in-oil emulsion to oil-in-water emulsion. The results also indicated that the rheological properties of crude oils and their emulsions are significantly temperature-dependent.  相似文献   

6.
In the frame of formulation of W/O emulsions entrapping polysaccharides devoted to agricultural applications, the aim of this work was to study the stability over time of these emulsions, stabilized with either soybean lecithin or polyglycerol polyricinoleate (PGPR) as emulsifiers. Emulsifiers were dissolved in oil phase, and polysaccharides (carboxymethycellulose (CMC), guar, xanthan) in ultrapure water. Emulsions stability was studied through natural aging tests and accelerated aging tests, using bottle tests, microscopy and calorimetry. Experiments showed that PGPR was more efficient than lecithin to stabilize emulsions containing the polysaccharides studied, and that emulsions prepared with CMC showed the best stability.  相似文献   

7.
The process parameters are important in the development of emulsions containing liquid crystals. Thus, we studied the influence of the mixing speed in microscopic and rheological features. Oil-in-water emulsions using vegetable oils and nonionic surfactant were developed employing gradual raise of the mixing speed. It decreased the liquid crystal formation and the density values, and increased apparent viscosity values. The most suitable mixing speed was 600 rpm, since it allowed the attainment of emulsion with better performance and presence of lamellar liquid crystals. However, all emulsions were stable in these experimental conditions and presented pseudoplastic behavior and tixotropy.  相似文献   

8.
Small scale water-in-silicone oil emulsions were readily prepared using high speed mixers. Two surfactant systems were studied: a comb-type silicone-polyether surfactant, and a surfactant system employing a mixture of the surface active protein human serum albumin (HSA, in the internal phase) and an alkoxysilane-modified silicone TES-PDMS in the silicone oil (continuous phase). Little difference in particle sizes was noted between the two surfactant types for a given mixing protocol, but dual-blade turbulent mixing led to relatively monodisperse particles of approximately 2–5 m in diameter while high speed Dremel mixers led to bimodal particle distributions. Prior to spontaneous demulsification of the latter emulsions stabilized by HSA/TES-PDMS (the 3225C emulsions remain stable), they proved very difficult to break. The addition of dibutyltin dilaurate to the HSA/TES-PDMS-stabilized emulsions led to catastrophic collapse of the emulsion and formation of a silicone elastomer at the bulk water/oil interface. This makes unlikely the possibility that silicone elastomers, formed by protein-catalyzed crosslinking of the alkoxysilane in albumin/TES-PDMS-stabilized emulsions, are involved in stabilizing the emulsion. The nature of the stabilization of the interface is discussed.  相似文献   

9.
A series of W/O/W or O/W/O emulsion stabilized solely by two different types of solid nanoparticles were prepared by a two-step method. We explored the option of particular emulsifiers for the multiple Pickering emulsions, and a variety of nanoparticles (silica, iron oxide, and clay) only differing in their wettability was used. The primary W/O emulsion was obtained by the hydrophobic nanoparticles, and then the hydrophilic nanoparticles were used as emulsifier in the secondary emulsification to prepare the W/O/W emulsion. In a similar way, the primary O/W emulsion of the O/W/O emulsion was stabilized by the hydrophilic nanoparticles, while the secondary emulsification to prepare the O/W/O emulsion was effected with the hydrophobic nanoparticles. The resultant multiple Pickering emulsion was stable to coalescence for more than 3 months, except the W/O/W emulsions of which the secondary emulsion stabilized by clay nanoparticles became a simple O/W emulsion in a day after preparation. Moreover, the temperature and pH sensitive poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAm-co-MAA)) microgels were introduced as an emulsifier for the secondary emulsification to obtain the stimulus-responsive multiple W/O/W emulsion. Such microgel-stabilized multiple emulsions could realize the efficient controlled release of water-soluble dye, Rhodamine B (RB) on demand in a multiple-emulsion delivery system.   相似文献   

10.
The optical microscopy images of an emulsion are commonly distorted when viewed between a cover glass and a planar microscopy slide. An alternative method is to place the sample on a slide with a cavity, which in turn suffers from incomplete information for high internal phase ratio (HIPR) emulsions, due to the inevitable crowding of the drops. This problem is particularly acute for more complex emulsions, such as those with Janus drops, for which a detailed image of the drop is essential. A number of publications have recently described Janus emulsions prepared by a one-step high energy emulsification process with microscopy images obtained by the sample between a planar slide and a cover glass. The correlation to the morphology of emulsions in bulk of these images is critical, but, so far, a potential equivalence has not been established. Since the images are central in order to understand why Janus emulsions should form under such conditions, the need to ascertain any such association is urgent. With this contribution, we compare images from different microscopy methods to those of gently diluted HIPR emulsions. The results reveal that the images of the emulsion samples between a cover glass and a planar microscope slide actually present a realistic representation of the drop topology in bulk emulsions.  相似文献   

11.
Emulsion liquid membranes (ELM) have received significant attention in the separation of various metal ions from industrial wastewater. Still efforts are needed to get the desired level of stability to overcome the hindrance in the application of ELM at industrial scale. In this paper, the effects of various parameters such as emulsification speed, concentration of cosurfactant, surfactant, carrier and impeller speed during extraction on the stability of an emulsion liquid membrane are studied. Dispersion destabilization of w/o emulsion is checked by Turbiscan. Drop size distribution and photomicrographs of the emulsions are also analyzed to evaluate stability of the emulsion. Instability of emulsion liquid membrane during extraction process is measured in terms of membrane breakage. A stable emulsion is used for the extraction of mercury from aqueous solution in small scale as well as in large scale.  相似文献   

12.
The effect of hydrophobicity index (HI) of fumed nanosilica specimens on stability of water-in-oil (W/O) highly concentrated emulsions (HCE with ? = 90 vol%) with an overcooled dispersed phase was studied. A series of five silica with HI in the 0.60–1.34 range and HI > 3 were used separately and in combination with a low molecular weight traditional surfactant, Sorbitan MonoOleate (SMO). First, it was shown that SMO alone can stabilize W/O HCE whereas only silica nanoparticles with intermediate HI in the range 0.97 ≤ HI ≤ 1.34 could form W/O emulsions only up to 77–79 vol%. Then, on the contrary to SMO-based emulsions, Pickering emulsions are unstable under shearing. When mixed (silica plus SMO) emulsifier systems were used, firstly a thermodynamic consideration revealed that only SMO is likely to adsorb at the W/O interface and controls the emulsifying process by the decrease in the interfacial tension. Then, interestingly, all different kinds of emulsion stability investigated in this study demonstrate a breaking point (BP) at HI = 0.97. Below the BP the emulsions were found to be very unstable on shelf as well as under shear. Above the BP, a clear synergy between colloidal silica and SMO surfactant has been found.   相似文献   

13.
This article discusses the effect of water fraction on the rheological properties of waxy crude oil emulsions including gel point, yield stress, viscosity, and thixotropy. The experimental results reveal that the rheological behaviors of the w/o emulsion samples all intensify with the increase of water volume fraction within 60%. Of more significance is that a correlation for w/o emulsions between yield stress and water volume fraction is put forward with an average relative error of 6.75%. In addition, some mainstream viscosity prediction models of w/o emulsions are evaluated, and Elgibaly model is the best-fit for the emulsions in this study.  相似文献   

14.
Water-in-oil, high internal phase emulsion made of super-cooled aqueous solution containing a mixture of inorganic salts and stabilized with non-ionic surfactant (sorbitan monooleate) alone was investigated. It was not possible to produce a highly concentrated emulsion (with aqueous phase fraction = 94 wt %), stabilized with surface-treated silica, solely: we were able to form an emulsion with a maximal aqueous phase mass fraction of 85 wt % (emulsion inverts/breaks above this concentration). The inversion point is dependent on the silica particle concentration, presence of salt in the aqueous phase, and does not depend on the pH of the dispersed phase. All emulsions stabilized by the nanoparticles solely were unstable to shear. So, the rheological properties and stability of the emulsions containing super-cooled dispersed phase, with regards to crystallization, were determined for an emulsion stabilized by non-ionic surfactant only. The results were compared to the properties obtained for emulsions stabilized by surface treated (relatively hydrophobic) silica nanoparticles as a co-surfactant to sorbitan monooleate. The influence of the particle concentration, type of silica surface treatment, particle/surfactant ratio on emulsification and emulsion rheological properties was studied. The presence of the particles as a co-stabilizer increases the stability of all emulsions. Also, it was found that the particle/surfactant ratio is important since the most stable emulsions are those where particles dominate over the surfactant, when the surfactant’s role is to create bridging flocculation of the particles. The combination of the two types of hydrophobic silica particles as co-surfactants is: one that resides at the water/oil interface and provides a steric boundary and another that remains in the oil phase creating a 3D-network throughout the oil phase, which is even more beneficiary in terms of the emulsion stability.  相似文献   

15.
In this study, it was aimed to compare the rheological properties of carboxymethylcellulose (CMC) in aqueous solutions and their corresponding emulsions containing 0.05, 0.1, 0.25, and 0.5% CMC in the aqueous phase. Samples with 0.05 and 0.1% CMC showed Newtonian behavior, but shear-thinning behavior was observed in CMC solutions and emulsions with increasing CMC concentrations to 0.25% and 0.5%. Rheological behavior of all samples were modeled by Power law (R 2 = 0.986–197) and Casson models (R 2 = 0.968–1). According to the Ostwald–de Waele model, the consistency index of all samples was increased and the flow behavior index decreased with increasing CMC concentration. Comparison of our data with four predicting models (Einstein, Larson, Pal, and Dougherty-Krieger equations) showed that the viscosity of continuous phase controls the viscosity of emulsions with high CMC concentrations and these models are not applicable for such situations. Addition of CMC increased the emulsion stability of O/W emulsions. This stability was increased with increasing CMC concentrations.  相似文献   

16.
17.
This work aims to the extraction of the priority pollutant 4-nitrophenol (4-NP) from water by emulsion liquid membrane (ELM). Liquid membrane consists of a diluent (hexane) and a surfactant (Span 80). Sodium carbonate solution was used as internal aqueous phase. Effects of important experimental conditions governing the stability of the W/O emulsion were investigated. Influence of operating parameters that affects the permeation of 4-NP such as surfactant concentration, emulsification time, sulfuric acid concentration in external phase, acid type in external phase, internal phase concentration, type of internal phase, stirring speed, volume ratio of internal phase to membrane phase, treatment ratio, 4-NP initial concentration, and diluent type was examined. This study also evaluated the effect of Na2CO3 concentration in the internal aqueous phase on the stripping of 4-NP. Additionally, the reuse of the recovered membrane was studied. Under most favorable conditions, practically all the 4-NP and aniline (AN) molecules present in the feed phase were extracted. The recovery of the membrane phase was total and the extraction of 4-NP was not decreased. The ELM treatment process represents a very interesting advanced separation process for the removal of 4-NP and AN from aqueous solutions.  相似文献   

18.
Calcium in the form of tricalcium phosphate was encapsulated in the inner water phase of water-in-oil-in-water emulsion. Efficiency and payload of microcapsules were optimized using a D-optimal mixture design with four components (gelatin, agar, primary water-in-oil emulsion, and water in outer phase). Release profiles of calcium from microcapsules were determined at 4°C over 12 days. It was found that microencapsulation efficiency increased by increasing of water-in-oil emulsion to 45% and then decreased at higher contents of this portion. However, payload increased continuously with increase of water-in-oil fraction. Less calcium was released when both biopolymers and water-in-oil emulsion contents were increased.  相似文献   

19.
Experimental results indicated the contact angles in the drops of Janus emulsions formed in a one-step mixing process to be invariant within a significant range the oil volume ratios, similar to the results from microfluidics emulsification. Since this result points to a connection between the kinetically formed emulsions and the local equilibrium topology of emulsion drops, the effect of interfacial tensions on the morphology of Janus emulsions was estimated from the equilibrium interfacial tensions at the line of contact. Realistic values of the tensions revealed the limited range of these to obtain Janus drops and also offered correlation between the equilibrium entities and the curvature of the interface between the two oils.  相似文献   

20.
Stabilization of emulsions with solid particles can be used in several fields of oil and gas industry because of their higher stability. Solid particles should be amphiphilic to be able to make Pickering emulsions. This goal is achieved by using surfactants at low concentrations. Oil-in-water (o/w) emulsions are usually stabilized by surfactant but show poor thermal stability. This problem limits their applications at high-temperature conditions. In this study, a novel formulation for o/w stabilized emulsion by using silica nanoparticles and the nonionic surfactant is investigated for the formulation of thermally stable Pickering emulsion. The experiments performed on this Pickering emulsion formula showed higher thermal stability than conventional emulsions. The optimum wettability was found for DME surfactant and silica nanoparticles, consequently, in that region; Pickering emulsion showed the highest stability. Rheological changes were evaluated versus variation in surfactant concentration, silica concentration and pH. Scanning electron microscopy images approved the existence of a rigid layer of nanoparticle at the oil-water interface. Finally, the results show this type of emulsion remains stable in harsh conditions and allows the system to reach its optimum rheology without adding any further additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号