首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of systems containing sodium alkyl polypropylene oxide sulfate with equimolar ratio of polypropylene oxide ammonium chloride was determined as a function of salt concentration and alkane carbon number at ambient temperature. Visual inspection as well as cross polarizers were used to detect anisotropy. Solubilization ratios for oil and brine in the middle phases were measured and used to calculate the interfacial tension (IFT) between the microemulsion and oil or brine. The fish diagram is presented showing a minimum amount of 0.20 wt% surfactant needed to form the middle phase. Swelling increases with decreasing the alkane carbon number of the oil. Ultra low IFT values were predicted for the systems investigated.  相似文献   

2.
Experimental studies are conducted in order to elucidate the mechanisms responsible for synergism/antagonism for lowering dynamic interfacial tension in hydrocarbons/binary surfactant mixtures/brine systems. The dynamic interfacial tensions between hydrocarbons of different alkane carbon numbers (from 6 to 14) and solutions of binary surfactant mixtures were measured. We found that the synergism/antagonism for interfacial tension reduction in binary surfactant mixtures having low interfacial tension values was influenced by the alkane carbon number of oil phase, hydrophilic-lipophilic ability of surfactant, and NaCl concentration. A new explanation in view of interactions among surfactant molecules, oil molecules, and water molecules is provided.  相似文献   

3.
Experimental studies are conducted in order to elucidate the mechanisms responsible for synergism/antagonism for lowering dynamic interfacial tension in model oil/surfactant/brine systems. A well-defined model oil is selected for controlled design of experiments, thus enhancing verification of known and unknown mechanisms. The systems examined contain model oils and two petroleum sulfonate solutions. The influence of additives in oil phase, such as carboxylic acids with different chain length, n-octadecanol, and oil soluble surfactant SP-60, on the equivalent alkane carbon number (EACN) values has been examined. The interfacial tensions of different model oils with different EACN values against surfactant solutions with different n(min) values have also been obtained. We find that antagonism has been observed when EACN/n(min) value is far from unity by adding organic components, while synergism has been observed when EACN/n(min) value is close to unity. The results present here suggest that organic additives in oil phase controlled interfacial tension by changing the partition of surfactants in oil phase, aqueous phase, and interface.  相似文献   

4.
An experimental study on determination of alkaline, surfactant, polymer (ASP) flooding systems using natural mixed carboxylate was conducted to examine the decisive factor for ASP flooding, phase behavior or interfacial tension. The volume and color of middle phase liquid were observed, the transient interfacial tension at different salt and alkaline concentrations were measured and, finally, coreflood test in laboratory were made. The results showed the flooding system with larger volume and brown color of middle phase emulsion sometimes not to obtain better oil recovery efficiency. The primary and more important phenomenon affecting the oil recovery is a lower or ultralow minimum interfacial tension value at the crude oil/soluble phase interface.  相似文献   

5.
The time dependence of the interfacial tension between water–acidic crude oil and water–synthetic oil was investigated for aqueous phase pHs ranging from 2 to 9 using the du Noüy ring method at 20°C. Myristic acid in dodecane was selected as a model (synthetic oil) for acidic crude oil containing indigenous surfactants, and the similarities and differences between the dynamic interfacial tension behaviours of the natural and synthetic crude oil systems were compared. The initial interfacial tension and the relaxation of the interfacial tension are sensitive to the aqueous phase pH for both systems. The adsorption kinetics of the indigenous surfactants and myristic acid could be well fitted with the monoexponential model, and the time constants obtained in this manner indicates that reorganization of the indigenous surfactants and myristic acid at the w/o interface are pH dependent. The experimental results also indicate that indigenous surfactants in acidic crude oil and myristic acid in dodecane have similar film formation behaviours at the w/o interface for the range of pHs investigated.  相似文献   

6.
The effects of salinity and temperature on interfacial tension are discussed for oil-water-mixed surfactant. At an appropriate formulation, an interfacial tension minimum occurs that corresponds to miscibility between oil and water phases. We have named this system as miscible system. It is essential that the surfactant-rich middle layer containing a dispersion of small special liquid crystals forms in order to get ultra-low interfacial tension. These complicated surfactant (ionic-nonionic) systems display behavior similar to that of pure nonionic surfactants.  相似文献   

7.
石油磺酸盐体系中相微乳液研究   总被引:8,自引:0,他引:8  
宽分子量分布的石油磺酸盐在低浓度时有正丁醇、正构烷烃、盐存在的情况下能成中相微乳液。研究了盐浓度、烷烃种类、醇浓度对该体系中相微乳液的形成及特性影响,得到中相微乳液的特性参数;最佳含盐量S^*、增溶参数σ、盐宽△S、界面张力γ等,并从理论上进行了探讨。采用模拟驱油装置测定了体系的驱油效率,对优化驱油体系设计具有重要意义。  相似文献   

8.
Partition coefficients, surface tension, and interfacial tension for some polar organic components dissolved in oil/water model systems have been investigated. The systems consist of isooctane modeling the oil phase and of water solutions of NaCl and CaCl2 modeling the water phase. The organic compounds examined were 1-naphtoic acid, 5-indanol, and quinoline, all well-defined molecules known to be representative of polar components in crude oil. The dependence on pH, salinity, and ionic strength in the water phase was investigated. The surface tension and interfacial tension were also examined as a function of component concentration. The results show a connection between the distribution of the polar components and the interfacial tension. Correspondence between the partition coefficient and the pKa value for the components is also reported. For 1-naphtoic acid none of the two ionization forms of the molecule are found to be surface active in aqueous solution. For 5-indanol both forms are surface active, and for quinoline only the nonionic form of the molecule is found to be surface active. The results indicate that the aqueous phase is the one that governs the interfacial tension. Increasing salinity increases the concentration of the component in the oil phase and decreases the interfacial tension between the oil phase and the aqueous phase. The results are explained due to the "salting-out" effect and to changes in the electrostatics for the various systems. Copyright 1999 Academic Press.  相似文献   

9.
Evaporating droplets of volatile organic solvent containing amphiphilic block copolymers may undergo hydrodynamic instabilities that lead to dispersal of copolymer micelles into the surrounding aqueous phase. As for related phenomena in reactive polymer blends and oil/water/surfactant systems, this process has been ascribed to a nearly vanishing or transiently negative interfacial tension between the water and solvent phases induced by adsorption of copolymer to the interface. In this report, we investigate the influence of the choice of organic solvent and polymer composition for a series of polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers, by in situ micropipette tensiometry on evaporating emulsion drops. These measurements suggest that the sensitivity to the organic solvent chosen reflects both differences in the bare solvent/water interfacial tension as well as the propensity of the copolymer to aggregate within the organic phase. While instabilities coincident with an approach of the interfacial tension nearly to zero were observed only for copolymers with PEO content greater than 15 wt.%, beyond this point the interfacial behavior and critical concentration needed to trigger surface instability were found to depend only weakly on copolymer composition.  相似文献   

10.
Experiments show that with increasing temperature, microemulsion systems undergo Winsor transitions. The transitions occur from Winsor I (oil droplets in water media) to Winsor II (water droplets in oil media) via Winsor III (bicontinuous phase) with an increase in the temperature. In this paper, it has been shown, for the first time, how one can study the qualitative effects of temperature, head, tail, and oil chain lengths, on these transitions. Simple cubic lattice with excluded volume and periodic boundary conditions is used to mimic the box of the simulation as a bulk of solution. The simulations have been done using the standard traditional Metropolis algorithm in the canonical ensemble (N, V, T). Configurational bias Monte Carlo and reptation moves are used with an equal probability to relax the systems. A very simple interaction model, i.e., the repulsions of water (or heads of surfactants) with oil (or tails of surfactants), is used due to the main characteristic of oil-water mixtures or amphiphilic molecule that is the hydrophobicity. The interfacial tension between oil and water (gammaow) is related to the averaged total energy of the lattice. The model shows that the Winsor III has a minimum interfacial tension (gammaow) similar to experimental results. Changing the phase structure from Winsor III to Winsor I (or Winsor II), increases the interfacial tension which is in agreement with experiments. To relate interfacial tension with the interaction parameter, the simple theory of Bragg-Williams has been used. All of the results such as the effects of oil chain length, head and tail beads number are all similar to the experimental results. Using the Davies method for calculating hydrophilic-lypophilic Balance (HLB), similar to the experimental results, Winsor III phase is formed at HLB value nearly to 10.  相似文献   

11.
The surface and hydrodynamic forces between individual oil droplets in solution can provide insight into both emulsion stability and processes such as drop coalescence in liquid-liquid extraction. We present the first measurements of the interaction forces between alkane droplets in aqueous solution using atomic force microscopy. The radii of the droplets were well below the capillary lengths for the system, thus gravity effects are negligible, and interfacial tension and interaction forces governed the system behavior. The effects of modulating electrostatic double-layer interactions and interfacial tension through the presence of an anionic surfactant are demonstrated. Challenges in interpretation of the force data due to drop deformation are also discussed. A range of drop approach and retract speeds was used to determine the regime where hydrodynamic drainage effects had significant impact on the measurement.  相似文献   

12.
用自制的3种十六烷基甲苯磺酸钠,研究了其正构烷烃/水体系的界面性能。分别考察了磺酸盐支化程度及浓度等内部因素以及外加助剂脂肪醇类型和无机盐浓度等外界因素对磺酸盐最小烷烃碳数nmin以及界面张力值的影响。结果表明,磺酸盐支化程度增加,其nmin变大,最低界面张力值变小;而随着磺酸盐浓度的增加,界面张力值先下降后上升;随着助剂脂肪醇碳链长度的增加,其nmin逐渐变大;无机盐的影响则表现为随着盐浓度的增加界面张力值先下降后上升,超低界面张力值出现在一个适宜的盐浓度范围内。  相似文献   

13.
The three-phase behavior of quaternary systems comprising N-lauroyl-N-methylglucamide (MEGA-12)/alcohol/alkane/water has been studied using epsilon-beta fishlike phase diagrams. From the epsilon-beta fishlike phase diagrams a series of phase inversions Winsor I (2) --> III (3) --> II (2) were observed, and the hydrophilic-lipophilic balanced (HLB) plane equation for the quaternary system was deduced. Some physicochemical parameters, such as the mass fraction of alcohol in the HLB interfacial layer, A S, the coordinates of the start (beta B, epsilon B) and end points (beta E, epsilon E) of the middle-phase microemulsion, the mass fractions of MEGA-12 and alcohol in the total system (C S and C A), and the solubilities of MEGA-12 and alcohol in oil phase (S O and A O), were calculated. The effects of different alcohols, alkanes, and NaCl concentrations in the aqueous phase on the phase behavior and solubilization capacity were investigated, which indicates that alcohol with longer and alkane with shorter hydrocarbon chains have a larger solubilization capacity. NaCl concentration has little influence on the phase behavior.  相似文献   

14.
Organic molecule-modulated phase evolution of inorganic mesostructures   总被引:1,自引:0,他引:1  
The involvement of alkane in the P123-TEOS-NH4F-H3O+ synthesis system alters the phase behavior of the complex emulsion system dramatically. Changing one of the reaction parameters (such as the initial reaction temperature, IRT) will result in diverse solution mesostructures. With subsequent condensation of silicate species, interesting inorganic materials with various mesostructures are obtained. The present work is aimed at understanding the phase evolution behavior of this complex alkane (C6-C12)-P123-TEOS-NH4F-H3O+ emulsion system, with emphasis on the influence of alkane chain number (ACN) and IRT. HREM (high-resolution electron microscopy), XRD (X-ray diffraction), nitrogen sorption, FFEM (freeze-fracture electron microscope), and interfacial tension techniques have been used to investigate the phase behavior of the emulsion system and the structure of the inorganic products. A linear relationship between the phase-transformation temperature (PTT) and ACN has been established, which could be attributed to the modification of alkane with respect to the hydrophobic-hydrophilic properties of the complex emulsion system. Moreover, the right combination of reaction temperature, ACNs, and thus-induced swelling of hydrophobic PPO blocks as well as the modification of hydrophilicity of PEO brushes by silicate oligmers is the driving force in altering the packing parameter/geometry of the copolymers surfactant (P123) aggregates. This leads to the diverse structures of the obtained mesoporous silicas. A temperature-induced phase-transformation mechanism has also been proposed and discussed.  相似文献   

15.
从表面活性剂分子量、表面活性剂浓度、电解质浓度、 烷烃碳数等方面考察了系列烷基苯磺酸盐异构体纯化合物的油水动态界面张力行为。研究表明,表面活性剂分子量越大和电解质浓度增加使界面张力动态变化越慢,达到平衡所需时间越长;表面活性剂浓度增加和烷烃碳数增加使界面张力动态变化加快,达到平衡所需时间减少。  相似文献   

16.
The two dominant factors that were found to affect the stability of multiple emulsions in high HLB surfactant systems are the osmotic pressure imbalance between the internal aqueous phase and the external aqueous phase, and the adsorption/desorption characteristics of the emulsifier/surfactant film at the oil/water interface. Synergistic interaction between the low HLB emulsifier and the high HLB surfactant that produces very low interfacial tension of the order of 10(-2) mN/m at the oil/water interface was found to occur in some of the systems investigated. Long term stability was observed in multiple emulsion containing these systems. However, no synergy was observed in systems in which either the oil or the emulsifier, or both, contained unsaturated chains. In fact, desorption of the adsorbed surfactant film was observed in systems containing unsaturated chains. The observed desorption from the interface of the emulsifier in these systems was attributed mainly to the inability of the unsaturated chains to form a close packed, condensed interfacial film. Presence of closely packed, condensed interfacial film is necessary to prevent solubilization of the adsorbed low HLB emulsifier by the high HLB surfactant. Multiple emulsions prepared using systems containing unsaturated hydrocarbons were highly unstable.  相似文献   

17.
Two sodium branched‐alkylbenzensulfonates with additional alkyl substituents were synthesized through a series of reactions. The interfacial tension of these alkylbenzenesulfonates between 1.0% NaCl solution and six n‐alkanes were measured. From the data of measurements the following values were calculated: critical micelle concentration (cmc), the interfacial tension at the cmc (γcmc), interfacial excess concentration at the cmc (Γm), area per molecule at the cmc (Am). There were a minimum γcmc and a maximum Γm appeared for the same n‐alkane with increasing the hydrocarbon chain length of the oil. These indicated that the hydrocarbon chain length of oil have the important effect on adsorption and interfacial tension.  相似文献   

18.
The effects of physicochemical properties of two-phase liquid systems (interfacial tension and differences in density and viscosity) on the retention of the stationary phase in the column were examined. These effects mainly determine the separation parameters of compounds. Extractant/decane–aqueous phase systems were used; their physicochemical properties changed both as a result of adding an extractant (di-(2-ethylhexyl) phosphoric acid, trioctylamine, or tributyl phosphate) to the organic solvent and because of a change in the composition of the aqueous phase. Aqueous ammonium sulfate of varying concentration was used as a mobile phase. It was shown that interfacial tension substantially affects the behavior of the systems under consideration. An increase in the ammonium sulfate concentration only slightly affects the retention factor of the stationary phase in the column. With a proper choice of the stationary phase, countercurrent chromatography can be used for the extraction of components from salt solutions of various concentrations.  相似文献   

19.
The regulation of spontaneous waves at water/oil interfaces was investigated, focusing on effects of materials and sizes of containers. Trimethylstearylammonium chloride was dissolved in an aqueous phase. Nitrobenzene with potassium iodide and iodine was used as an organic phase. Rotation of interfacial waves with almost triangular shape was observed only in containers made of glass. The nature of interfacial waves is sensitive to container size. There was no interfacial wave in PFA (Teflon) containers. However, when a glass plate was soaked vertically to the interface, oscillation of contact angles of water/oil interfaces to glass plates was observed. The oscillation generated wave propagation along the plate. Dynamic interfacial tension was measured by Wilhelmy method and the pendant drop technique. Results with the Wilhelmy method in small glass containers exhibited spontaneous oscillation. However, oscillations in dynamic interfacial tension were not observed for other cases, i.e., the Wilhelmy method for large glass containers, for PFA containers, and for the pendant drop technique. It was concluded that all nonlinear behavior such as wave generation and apparent tension oscillation could be attributed to the effect of the sidewalls of container on the adsorption/desorption kinetics of the surfactant. We propose a possible scenario which can explain all of the qualitative features of the present experimental findings.  相似文献   

20.
An anionic surfactant, synthesized with ricinoleic acid from castor oil, was obtained and its behavior in terms of microemulsion formation (via pseudo-ternary diagram analysis) and liquid-gas surface tension (both for microemulsions and pure surfactant-water systems) was determined as a function of temperature and NaCl concentration in the aqueous phase. Microemulsions were formed by using butanol as co-surfactant and kerosene as the oil phase. Concerning the pseudoternary diagrams, the increase in NaCl concentration resulted in a decrease in the Winsor IV region, which was correlated to a possible occurrence of nonmicellar aggregates, induced by the high concentration of NaCl in the aqueous phase. Surface tension measurements also indicated that at the very high NaCl concentrations used there could be the formation of surfactant aggregates. The oil phase in microemulsionated systems decreased surface tension (but increased CMC): Possible interactions between isolated surfactant molecules and molecules from the oil phase were used to explain these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号