首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium-gold core-shell nanoparticles were synthesized in the aqueous domains of water in oil microemulsions by the sequential reduction of H2PdCl4 and HAuCl4. The nanoparticles were characterized by ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). The UV-vis spectra confirm the presence of palladium nanoparticles after reducing H2PdCl4. These particles have been used as seeds for the core-shell particles. UV-vis spectra show that, after reducing HAuCl4, the surface plasmon absorption of the nanoparticles is dominated by gold, revealing the encapsulation of the palladium seeds. These results agree with crystallographic analysis performed with high-resolution TEM pictures, as well as with selected area electron diffraction. The TEM pictures show the core-shell nanoparticles with an average diameter of 9.1 nm, as compared with 5 nm for the palladium seeds, in good agreement with the used Pd:Au molar ratio.  相似文献   

2.
We developed a selective solvothermal synthesis of palladium nanoparticles on nanodiamond (ND)–graphene oxide (GO) hybrid material in solution. After the GO and ND materials have been added in PdCl2 solution, the spontaneous redox reaction between the ND–GO and PdCl2 led to the creation of nanohybrid Pd@ND@GO material. The resulting Pd@ND@GO material was characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectrometry, scanning electronic microscopy (SEM), and atomic absorption spectrometry methods. The Pd@ND@GO material has been used for the first time as a catalyst for the reduction for 2-nitrophenol and the degradation of methylene blue in the presence of NaBH4. GO plays the role of 2D support material for Pd nanoparticles, while NDs act as a nanospacer for partly preventing the re-stacking of the GO. The Pd@ND@GO material can lead to high catalytic activity for the reduction reaction of 2-nitrophenol and degradation of methylene blue with 100% conversion within ~15 s for these two reactions even when the content of Pd in it is as low as 4.6 wt%.  相似文献   

3.
Abstract

Stable palladium colloids were prepared by the in-situ reduction of palladium chloride (PdCl2) in the presence of protective water-soluble polymers and cationic polyelectrolytes. The particle sizes, morphologies, and particle-size distributions were determined by transmission electron microscopy and found to be in the nanometer size range. The catalytic activity of these colloidal metal-polymer systems was tested by the hydrogenation of cyclohexene as a model reaction. Most of the polymer-protected palladium nanoparticles were found to be catalytically active, and final conversions up to 100% were obtained in many cases.  相似文献   

4.
Crosslinked poly(4‐vinylbenzyl chloride) (PVBC) nanospheres of about 160 nm were first synthesized by emulsion copolymerization of 4‐vinylbenzyl chloride (VBC) in the presence of a crosslinking agent, p‐divinylbenzene. Subsequent modification of the nanosphere surfaces via surface‐initiated atom transfer radical polymerization of 4‐vinylpyridine, using the VBC units of PVBC on the nanosphere surface as the macroinitiators, produced a well‐defined and covalently tethered poly(4‐vinylpyridine) (P4VP) shells of 24–27 nm in thickness. Activation of the P4VP shells in a PdCl2 solution, followed by reactions with CO or H2S gas, gave rise to the corresponding P4VP composite shells containing densely dispersed palladium metal or palladium sulfide nanoparticles. The chemical composition of the nanosphere surfaces at various stages of surface modification was characterized by X‐ray photoelectron spectroscopy. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the organic/inorganic hybrid nanospheres coated with palladium/P4VP shells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2119–2131, 2008  相似文献   

5.
The effect of the nature of the acido ligand in the precursor and the modifying action of elemental phosphorus on palladium catalysts for hydrogenation are reported. The large turnover frequency (TOF) and turnover number (TON) values observed for styrene hydrogenation on the Pd blacks prepared in situ by PdCl2 reduction with hydrogen in DMF are due to the formation of fine-particle catalyst with a base particle size of 6–10 nm. This is explained by the high PdCl2 reduction rate and by the formation of a palladium cluster stabilizer—dimethylammonium chloride—in the reaction system via the catalytic hydrolysis of the solvent (DMF). The modifying action of elemental phosphorus on the properties of the palladium catalysts depends on the nature of the acido ligand in the precursor. In the case of oxygen-containing precursors at small P/Pd ratios, elemental phosphorus exerts a promoting effect, raising the TON and TOF values by a factor of about 9. In the case of palladium dichloride as the precursor, white phosphorus exerts an inhibiting effect. At the same time, it enhances the stability of the catalyst, raising the TON value at P/Pd = 0.3. The causes of these distinctions are considered.  相似文献   

6.
Aqueous chemical oxidative dispersion polymerizations of pyrrole using PdCl2 oxidant were conducted using water-soluble polymeric colloidal stabilizers in order to synthesize polypyrrole–palladium (PPy–Pd) nanocomposite particles in one step. PPy–Pd nanocomposite particles with number average diameters of approximately 30 nm were successfully obtained as colloidally stable aqueous dispersions, which were stable at least for 7 months, using poly(4-lithium styrene sulfonic acid) colloidal stabilizer. The resulting nanocomposite particles were extensively characterized with respect to particle size, size distribution, colloidal stability, nanomorphology, surface/bulk chemical compositions, and conductivity. X-ray photoelectron spectroscopy indicated the existence of poly(styrene sulfonic acid) colloidal stabilizer on the surface of the nanocomposite particles. Transmission electron microscopy studies confirmed that nanometer-sized Pd nanoparticles were distributed in the PPy matrix.  相似文献   

7.
The [N-(2-pyridyl)] para-styrene sulfonamide (PSS) was prepared as a monomer, from the reaction of para-styrene sulfonyl chloride and 2-amino pyridine in the presence of potassium hydroxide solution 0.5 M as a base, and CH3Cl. Polystyrene [N-(2-pyridyl) sulfonamide] (PPSS) was synthesized from the polymerization of [N-(2-pyridyl)] para-styrene sulfonamide (PSS). The Polystyrene bis [N-(2-pyridyl) sulfonamide] palladium (II) as a polymer- supporting palladium complex was also prepared from the reaction of PdCl2 (CH3CN)2 with PPSS in the presence of KOH 0.5 M. Polystyrene bis [N-(2-pyridyl) sulfonamide] palladium (II) is produced as a novel heterogeneous catalyst for coupling reactions for C-C bond formation. This method includes higher yield and has an easier work-up procedure. The structures of the monomer, polymer and its Pd complex were confirmed by using FT-IR and 1H-NMR spectroscopy. Elemental analysis of Pd by inductively coupled plasma (ICP) technique and hot filtration test showed loading of the metal into solution from the catalyst The heterogeneous catalyst was recycled without any loss in its properties.  相似文献   

8.
In the work, reactions of a partially deprotonated polypyrrole doped with hydroxide ions (PPyOH) in various PdCl2 aqueous solutions which differed in acidity were studied. Using X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy it was established that in the PdCl2 solutions of lower acidity PPyOH was oxidatively doped and Pd0 and Pd2+ were incorporated into the polymer matrix. Pd2+ formed palladium(II) hydroxy-and/or aquochlorocomplex dopant anions and/or was coordinated by nitrogen atoms of the polymer (Pd-N bond). Additionally, deprotonation of PPyOH occurred in the PdCl2 solutions of lower acidity. It was proposed that deprotonation of PPyOH was caused by nucleophilic attack of [PdCl3(H2O)] on the positively charged, doped polymer chain. By comparison of the PPyOH and chloride-doped polypyrrole (PPyCl)-palladium systems prepared in similar PdCl2 solutions of lower acidity it was shown that the type of the counterion in the starting polymer has a decisive effect on the deprotonation process.PPyOH was less reactive towards palladium species in the PdCl2 solutions of higher acidity where [PdCl4]2− was the dominant complex. PPy-palladium systems containing exclusively Pd2+ were obtained in this case. It was proposed that incorporation of palladium species in these conditions proceeded via an acid-base reaction or coordination of palladium ions by the polymer chain (Pd-N bond formation).Results of the studies may serve as the basis for the preparation of a variety of polypyrrole-supported palladium catalysts.  相似文献   

9.
《先进技术聚合物》2018,29(8):2204-2215
New aromatic poly(ether ketone amide)s containing 4‐aryl‐2,6‐diphenylpyridine units were prepared by the heterogeneous palladium‐catalyzed carbonylative polymerization of aromatic diiodides with ether ketone units, aromatic diamines bearing pyridine groups, and carbon monoxide. Polymerizations were performed in N,N‐dimethyl‐ acetamide (DMAc) at 120°C in the presence of a magnetic nanoparticles‐supported bidentate phosphine palladium complex [Fe3O4@SiO2‐2P‐PdCl2] as catalyst with 1,8‐diazabicycle[5,4,0]‐7‐undecene (DBU) as base and generated poly(ether ketone amide)s with inherent viscosities up to 0.79 dL/g. All the polymers were soluble in many organic solvents. These polymers showed glass transition temperatures between 219°C and 257°C and 10% weight loss temperatures ranging from 467°C to 508°C in nitrogen. These polyamides could be cast into transparent, flexible, and strong films from DMAc solution with tensile strengths of 86.4 to 113.7 MPa, tensile moduli of 2.34 to 3.19 GPa, and elongations at break of 5.2% to 6.9%. These polymers also exhibited good optical transparency with an ultraviolet‐visible absorption cut‐off wavelength in the 371 to 384‐nm range. Importantly, the new heterogeneous palladium catalyst can easily be recovered from the reaction mixture by simply applying an external magnet and recycled at least 8 times without significant loss of activity. Our catalytic system not only avoids the use of an excess of PPh3 and prevents the formation of palladium black, but also solves the basic problems of palladium catalyst recovery and reuse.  相似文献   

10.
Several palladium and platinum nanocatalysts protected by cationic polyelectrolytes were prepared by the in-situ reduction of palladium chloride, PdCl2, and dihydrogen hexachloroplatinate, H2PtCl6. The particle sizes and size distributions were determined by transmission electron microscopy, and the colloids were further characterized by UV-vis spectroscopy. The catalytic activity of these nanoparticles was qualitatively investigated by the hydrogenation and conversion of cyclohexene as a model reaction and compared to palladium and platinum colloids protected by a selection of water-soluble, nonionic polymers. The results show that the catalytic activity is strongly influenced by the protective polymer chosen, as well as particle size and morphology. The use of cationic polyelectrolytes decreases the catalytic activities significantly, in comparison to several water-soluble, nonionic polymers investigated. The effects depend strongly on the particular metal, as illustrated in this case by differences observed between palladium and platinum. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3151–3160, 1997  相似文献   

11.
Four palladium(II) complexes with R2edda ligands, dichlorido(O,O′-dialkylethylenediamine-N,N′-diacetate)palladium(II) monohydrates, [PdCl2(R2edda)]?H2O, R = Me, Et, n-Pr, i-Bu, and the new ligand precursor i-Bu2edda?2HCl?H2O, O,O′-diisobutylethylenediamine-N,N′-diacetate dihydrochloride monohydrate, were synthesized and characterized by IR, 1H and 13C NMR spectroscopy, and elemental analysis. DFT calculations were performed for the palladium(II) complexes and a high possibility for isomer formation due to stereogenic N ligand atoms was confirmed. Moreover, DFT simulations revealed energetic profile of isomer formation. Computational outcomes are in agreement with spectroscopic instrumental findings, both strongly indicating a non-stereoselective reaction between selected esters and K2[PdCl4], forming isomers.  相似文献   

12.
《Tetrahedron letters》2014,55(50):6868-6872
A new series of 2-amino, 4-azepanone, 5-aryl substituted derivatives of pyrimidine compounds were synthesized for the first time from the commercially available 2-amino-4-hydroxypyrimidine. The key step in the reaction is a conceptually new single step palladium catalyzed cross coupling along with the deprotection of N,N-diisopropylformimidamide using bis(triphenylphosphine)palladium(II) dichloride (PdCl2(PPh3)2).  相似文献   

13.
The feasibility of using graphite fluoride intercalation compounds (GFICs) containing metal compounds for manufacturing metal nanoparticles in a graphite or graphite fluoride matrix is shown using the hydrogen reduction of a dicarbon fluoride matrix intercalated with a chloroform solution of palladium acetylacetonate Pd(AA)2. The composite manufactured with a GFIC containing about 10.5 wt % Pd(AA)2 at 80°C is Pd-fluorographite; at 450°C, Pd-graphite is manufactured. The palladium particle size in the composites is about 20–30 nm; the palladium concentration is about 5 and 9 wt %, respectively.  相似文献   

14.
杨元法  庄明  曾朝霞  黄朝表  罗孟飞 《中国化学》2006,24(10):1309-1314
The ethylenediamine-functionalized resin-supported Pd(0)complex was prepared from PdCl_2 and ethylenedia-mine-functionalized chloromethylated polystyrene,followed by reduction with KBH_4.The complex was character-ized by FT-IR,XRD,BET,SEM and EDS.The resin-supported catalyst exhibited high catalytic activity in theHeck reaction and could be reused up to 17 times in NMP or 16 times in DMF at 90 ℃ in the Heck reaction of io-dobenzene with acrylic acid.The leaching investigation disclosed that the palladium leaching was caused by the in-teraction of iodobenzene with the metal Pd(0)on supported catalyst.The leached palladium species in filtrate wasvery stable and could be reused five times after the solid catalyst was filtered off.A cross-transfer test in recyclingin the presence of additional carbon disclosed that the soluble leached palladium species had much higher catalyticactivity than supported and/or adsorbed palladium in solid-solution heterogeneous Heck reaction.  相似文献   

15.
A 5 wt% Pd/SiO2 catalyst was synthesized by heating PdCl2-impregnated SiO2 in H2 at 300°C for 2 h. It was found that the metal particle dispersion is improved when the reduction step is preceded by calcination at 300°C for 2h. Thermogravimetry of the impregnated support in air, N2 and H2 atmospheres was used to monitor the interactions occurring during the various preparative steps (i.e. drying, calcination and reduction) of the catalyst. The solid prduct of each preparative step was characterized by X-ray diffractometry and UV/Vis diffuse reflectance spectroscopy. The results indicate that following the drying step (at 110°C in air) the palladium occurs in two detectable forms: PdCl2 particles and Si?O?Pdn+ surface species. The calcination appears to transform the PdCl2 particles into the latter surface species. The H2-reduction eventually converts the surface species into finely-dispersed Pd° metal particles (average size=8–14 nm). No other reduction products, such as PdySix, were detected.  相似文献   

16.
A new kind of silica‐supported third‐generation dendrimers capped by 1,4‐diaza‐bicyclo[2.2.2]octane (DABCO) group‐stabilized palladium(0) nanoparticles, and their enhanced catalytic activity in Suzuki–Miyaura and Mizoroki–Heck reactions in excellent yield under mild conditions, was reported. The resulting silica‐supported dendrimer‐stabilized palladium(0) nanoparticles with a particle size of 10–20 nm were prepared in situ by treatment with PdCl2 and hydrazine in ethanol at 60 °C for 24 h. The catalyst as prepared was characterized by FT‐IR, X‐ray diffraction, thermal analysis, elementary analysis (EA), scanning electron microscopy and transmission electron microscopy. Recycling experiments showed that the catalyst could be easily recovered by simple filtration and reused for up to five cycles without losing its activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This article describes a facile synthesis of a new series of symmetrical bis(arylethynyl)benzene derivatives via a one-pot coupling reaction between trialkylsilyl protected arylalkynyes and aryldihalides bearing both electron-withdrawing (EW) and electron-donating groups (ED) in the presence of PdCl2(PPh3)2(5%) / CuI/tetrabutylammonium fluoride / triethylamine / tetrahydrofuran (sila–Sonogashira reaction) at room temperature.  相似文献   

18.
TiO2 nanotubes were fabricated from TiF4 precursors within the pore channels of the linen fiber templates, resulting in crystalline fabricated titanate nanotubes (f-TNTs) upon removal by calcination at 500–600 °C. The f-TNTs were formed by the aggregation of TiO2 nanoparticles (NPs) with a diameter of 80 nm; the wall thickness and size of the f-TNTs can be controlled by adjusting the concentration of the TiF4 precursor, time, temperature, and the size of the linen fibers respectively. After that, palladium (Pd(0)) NPs were coated on the surface of the f-TNTs (Pd/f-TNTs) by the chemical reduction method, using NaBH4 as a reducing agent. The size of the Pd(0) NPs is about 10–13 nm. The Pd/f-TNT nanocomposite is systematically characterized by X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy. The Pd/f-TNT nanocomposite-modified glassy carbon electrodes exhibited excellent electrocatalytic activity as well as amperometric determination of hydrazine, ascorbic acid, and dopamine; these electrochemical applications were carried out by cyclic voltammetry.  相似文献   

19.
Coordination reactions of N-(2-thienylmethylidene)aniline derivatives, L, with PdCl2 or [PdCl4]2? in ethanol yield stable complexes of the type trans-(L)2PdCl2 with the azomethine nitrogen atoms as σ donors. These are not readily convertible to othor-palladated complexes. An X-ray crystallographic study of the complex (L2)2PdCl2 reveals a centrosymmetric geometry. The structure is in the triclinic space group $ {\rm P}\bar 1 $ with a = 8.633(2) Å, b = 12.759(3) Å, c = 8.398(2) Å, α = 96.65(5)°, β = 111.47(5)*, γ= 101.28(6)°, and Z = 1. The final R factor is 0.043 (Rw = 0.044) for 2396 observed reflections. There is no real bonding between a thiophene sulfur atom and a central palladium ion. However, a long distance interaction between S and Pd does exist.  相似文献   

20.
Present studies concentrated on the preparation, characterization, and electroactivity of palladium–polypyrrole (Pd/PPY) catalysts for oxygen reduction reaction. In particular, the effect of Nafion ionomer on their electroactivity was evaluated. In all catalysts prepared by “water-in-oil” microemulsion method, the Pd nanoparticles of ca. 7 nm in size appeared regardless of the Pd content (ranging from 2 to 20 wt.%). For comparison, carbon black-supported (Vulcan XC-72) catalyst (20 wt.% Pd) was also synthesized. Coating of the Pd/PPY samples with Nafion ionomer reduced their surface area and porosity. Chemical interaction due to Nafion acid functionalities affected the N-state of pyrrole as well as electron state of Pd in the Pd/PPY catalysts. As a result, the contribution of more oxidized palladium (Pdδ+) increased. These interactions played an essential role in the electroactivity of Pd/PPY for oxygen reduction reaction. The increased amount of Nafion relative to that of PPY reduced limiting current density whereas the half-wave potential shifted to a more positive value and the fraction of hydrogen peroxide remarkably decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号