首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title reaction in the presence of cetyltrimethylammonium bromide (CTAB) has been followed spectrophotometrically at 325 nm. In the process of reduction, characteristic surface resonance plasmon absorption peaks appear for the silver nanoparticles (NP) and the intensities increase with reaction time. UV–visible spectra suggest that [CTAB] and glutamic acid influence the morphology of the silver NP and act as shape‐directing agents, whereas [Ag+] has no effect. The effects of the total [glutamic acid], [CTAB], and [Ag+] on the apparent rate constants of silver NP formation are determined. The sigmoidal curve of absorbance versus reaction time indicates an autocatalytic path involved in the growth process. The α‐amino and ? COOH groups undergo chemical transformation (oxidative deamination and decarboxylation). The particles are spherical in shape with average diameters ranging between 12 and 25 nm, and their size distribution is wide. A plausible mechanism has been proposed with the following rate law: (d[silver sol])/dt = k[Ag+][Glutamic acid]T. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 680–691, 2012  相似文献   

2.
In this paper we report the effect of poly(vinyl alcohol) (PVA) on the silver nanoparticles formation of different morphologies by using silver nitrate and citric acid as the oxidant and reductant, respectively, for the first time. Our transmission electron microscopy (TEM) results suggest that the presence of PVA has significant impact on the size, shape, and the size distribution of the silver nanoparticles. The reaction follows a zero-order kinetics in [citric acid] as well as in [silver(I)] in the absence and presence of PVA. It was found that PVA and cetyltrimethylammonium bromide (CTAB) concentrations show no significant effects on the rate of CTAB-stabilized silver nanoparticles formation, whereas in presence of PVA, the reaction rate increases with (CTAB). Both spectrophotometric and TEM measurement demonstrated that the orange silver sol consists of aggregates, whereas the purple sol does not contain the aggregated arrangement. On the basis of various observations, the most plausible mechanism has been envisaged.  相似文献   

3.
Silver nanoparticles were prepared by the reduction of AgNO(3) with aniline in dilute aqueous solutions containing cetyltrimethlyammonium bromide, CTAB. Nanoparticles growth was assessed by UV-vis spectroscopy and the average particle size and the size distribution were determined from transmission electron microscopy, TEM. As the reaction proceeds, a typical plasmon absorption band at 390-450nm appears for the silver nanoparticles and the intensities increase with the time. Effects of [aniline], [CTAB] and [Ag(+)] on the particle formation rate were analyzed. The apparent rate constants for the formation of silver nanoparticles first increased until it reached a maximum then decreased with [aniline]. TEM photographs indicate that the silver sol consist of well dispersed agglomerates of spherical shape nanoparticles with particle size range from 10 to 30nm. Aniline concentrations have no significant effect on the shape, size and the size distribution of Ag-nanoparticles. Aniline acts as a reducing as well as adsorbing agent in the preparation of roughly spherical, agglomerated and face-centered-cubic silver nanoparticles.  相似文献   

4.
A non-toxic route was used for the preparation of silver nanoparticles using tryptophan (Trp) as reducing/stabilizing agent in the presence of cetyltrimethyl ammonium bromide (CTAB). Role of water soluble neutral polymer poly(vinylpyrrolidone) (PVP) has been studied on the growth of yellow colour silver nanoparticle formation. The synthesized nanostructures were characterized by UV–Visible absorption spectroscopy, transmission electron microscopy (TEM) by observing the size and distribution of silver nanoparticles. As the reaction proceeded, particles grew up to about 10 and 20 nm in the presence and absence of PVP, respectively, as determined by TEM. The formed nanoparticles showed the highest absorption plasmon band at 425 nm. Rate of silver sol formation increases with the [Trp], [CTAB] and [PVP], reaching a limiting value and then decreases with the increase in concentrations of these reagents. It was observed that nanoparticles are spherical, aggregated and poly dispersed in the absence and presence of PVP, respectively. On the basis of kinetic data, a suitable mechanism is proposed and discussed for the silver sol formation.  相似文献   

5.
We report a simple chemical reduction method for the synthesis of different colored silver nanoparticles, AgNP, using tyrosine as a reducing agent. Effects of cetyltrimethylammonium bromide, CTAB, and tyrosine concentrations are analyzed by UV-visible measurements and scanning electron microscopy (SEM) to evaluate the mode of AgNP aggregation. The position and shape of the surface resonance plasmon absorption bands strongly depend on the reaction conditions, i.e., [CTAB], [tyrosine], and reaction time. Sub-, post-, and dilution-micellar effects are accountable for the fast and slow nucleation and growth processes. Spectrophotometric measurement also shows that the average size and the polydispersity of AgNP increase with [CTAB] in the solution. CTAB acted as a shape-directing agent.  相似文献   

6.
Kinetic data for the silver nitrate–ascorbic acid redox system in presence of three surfactants (cationic, anionic and nonionic) are reported. Conventional spectrophotometric method was used to monitor the formation of surfactant stabilized nanosize silver particles during the reduction of silver nitrate by ascorbic acid. The size of the particles was determined with the help of transmission electron microscope. It was found that formation of stable perfect transparent silver sol and size of the particles depend upon the nature of the head group of the surfactants, i.e., cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and Triton X-100. The silver nanoparticles are spherical and of uniform particle size, and the average particle size is about 10 and 50 nm, respectively, for SDS and CTAB. For a certain reaction time, i.e., 30 min, the absorbance of reaction mixture first increased until it reached a maximum, then decreased with [ascorbic acid]. The reaction follows a fractional-order kinetics with respect to [ascorbic acid] in presence of CTAB. On the basis of various observations, the most plausible mechanism is proposed for the formation of silver nanoparticles.  相似文献   

7.
《印度化学会志》2023,100(8):101058
The kinetics of Cu(II) accelerated L-valine (Val) oxidation by hexacyanoferrate(III) in CTAB micellar medium were investigated by measuring the decline in absorbance at 420 nm. By adjusting one variable at a time, the progression of the reaction has been inspected as a function of [OH], ionic strength, [CTAB], [Cu(II)], [Val], [Fe(CN)63−], and temperature using the pseudo-first-order condition. The results show that [CTAB] is the critical parameter with a discernible influence on reaction rate. [Fe(CN)6]3- interacts with Val in a 2:1 ratio, and this reaction exhibits first-order dependency with regard to [Fe(CN)63−]. In the investigated concentration ranges of Cu(II), [OH], and [Val], the reaction demonstrates fractional-first-order kinetics. The linear increase in reaction rate with added electrolyte is indicative of a positive salt effect. CTAB significantly catalyzes the process, and once at a maximum, the rate remains almost constant as [CTAB] increases. Reduced repulsion between surfactant molecules' positive charge heads brought on by the negatively charged [Fe(CN)6]3-, OH, and [Cu(OH)4]2- molecules may be responsible for the observed drop in CMC of CTAB.  相似文献   

8.
The kinetics and mechanism of the formation of silver nanoparticles by reduction of Ag+ with maltose were studied spectrophotometrically by monitoring the absorbance change at 412 nm in aqueous and micellar media at a temperature range 45–60 °C. The reaction was carried out under pseudo-first-order conditions by taking the [maltose] (>tenfold) the [Ag+]. A mechanism of the reaction between silver ion and maltose is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law. The effect of surfactants, namely cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecyl sulfate (SDS, an anionic surfactant), on the reaction rate has been studied. The enthalpy and the entropy of the activation were calculated using the transition state theory equation. The particle size of silver sols was characterized by transmission electron microscopy and some physiochemical and spectroscopic tools.  相似文献   

9.
The oxidative behavior of d-dextrose toward diperiodatoargentate(III) (DPA) has been studied in the absence and presence of anionic and cationic micelles of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), respectively. The kinetics is based on the reduction of silver(III) to silver(I) by d-dextrose under pseudo-first-order conditions. The monoperiodatoargentate(III) ions act as active oxidants in comparison to that of DPA. The reactions are first- and fractional-order dependence with respect to [DPA] and [d-dextrose], respectively. The reaction rates decrease with [H+] and [periodate]. The premicellar environment of SDS and CTAB strongly inhibits the reaction rate. Inhibition is due to favorable thermodynamic/electrostatic binding between the Ag(III) complex and CTAB monomer aggregates. A suitable mechanism involving a one-electron transfer (rate-determining step) from d-dextrose to the silver(III) species has been proposed. Activation parameters have been evaluated and discussed.  相似文献   

10.
The kinetics of the o-toluidine–d-glucose reaction has been studied as a function of [o-toluidine], [d-glucose], [acetic acid], and temperature by UV–visible spectrophotometry at 630 nm in the absence and presence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS). The reaction follows second-order kinetics, being unity in each of the reactants in both media. The effect of added surfactants has also been investigated. The model of micellar catalysis, such as the Menger–Portony model modified by Bunton, is applied to explain the catalytic role of CTAB and SDS micelles. The association/incorporation constants (K s and K n), the rate constant in micellar media (k m), and the activation parameters of this system have been calculated and discussed. The value of the rate constant is found to be higher in SDS than in CTAB. Hydrophobic and electrostatic interactions are responsible for higher reaction rates in SDS. From all observed facts, a reaction mechanism involving a nucleophilic addition–elimination path has been suggested.  相似文献   

11.
The present work is aimed at studying the interaction between copper-glycyltyrosine [(Cu(II)-Gly-Tyr)]+ and ninhydrin in water and in micelles formed by cetyltrimethylammonium bromide (CTAB) using spectrophometric measurements at 80°C and pH 5.0. The order of reaction remains the same in the two systems, that is, first- and fractional-order kinetics with respect to [Cu(II)-Gly-Tyr]+ and [ninhydrin], respectively, in the excess of ninhydrin over [Cu(II)-Gly-Tyr]+. It was observed that the product formed is same in both the media. The reaction is catalyzed by CTAB, and the maximum rate enhancement is about three fold. Quantitative kinetic analysis of kψ–[CTAB] data was explained in terms of pseudo-phase of the micelles (assuming the association/incorporation of both the reactants at the micellar surface).  相似文献   

12.
Room temperature synthesis of silver nanoparticles has been successfully achieved by adding NaOH acting as an accelerator for the reduction of silver ions in ethylene glycol and glycerol without adding any external reducing agent. Highly monodisperse silver particles are obtained in the presence of various stabilisers such as PVP, SiO2 and SDS. Nanoparticles with a mean diameter of 25 nm and a mean deviation of 2 nm could be obtained under experimental conditions. The silver nanoparticles so obtained could be easily transferred to chloroform containing CTAB, giving rise to CTAB stabilised silver nanoparticles having sizes of around 25 nm. The newly found role of OH stabilisation was used to formulate a mechanism for the formation of silver nanoparticles in ethylene glycol and glycerol. In this mechanism, silver nanoparticles are stabilised in ethylene glycol by the adsorbed OH ions.  相似文献   

13.
Kinetics of acid‐catalyzed hydrolysis of some high‐spin Fe(II) Schiff base amino acid complexes were followed spectrophotometrically at 298 K under pseudo–first‐order conditions. The studied ligands were derived from the condensation of 5‐bromosalicylaldehyde with different four amino acids (phenylalanine, aspartic acid, histidine, and arginine). The acid hydrolysis reaction was studied in aqueous media and in the presence of different concentrations of the alkali halide (KBr) and cationic surfactant (cetyl‐trimethyl ammonium bromide, CTAB). The general rate equation was suggested to be rate = kobs[complex], where kobs = k2[H+]. The increase in [KBr] enhances the reactivity of the reaction, and the addition of CTAB to the reaction mixture accelerates the reaction reactivity. The obtained kinetic data were used to determine the values of δmΔG# (the change in the activation barrier) for the studied complexes when transferred from “water to water containing different [KBr]” and from “water to water containing altered [CTAB].”  相似文献   

14.
The oxidative degradation of d-xylose by cerium(IV) has been found to be slow in acidic aqueous solution with the evidence of autocatalysis. The reaction is accelerated in the cetyltrimethylammonium bromide (CTAB) micellar medium but sodium dodecyl sulfate (an anionic surfactant) has no effect. The pseudo first-order rate constants have been determined at different [reductant], [oxidant], [H2SO4], temperature, and [CTAB]. The reaction rate increased with increasing [d-xylose] and decreased with increase in [H2SO4]. The CTAB-micelle-catalyzed kinetic results can be interpreted by the pseudophase model. The kinetic parameters such as association constant (K s), micellar medium rate constant (k m), and activation parameters (E a, ΔH # and ΔS #) are evaluated and the reaction mechanism is proposed. The reaction rate is inhibited by electrolytes and the results provide an evidence for the exclusion of the reactive species from the reaction site.  相似文献   

15.
In this study, we investigated the effect of water soluble ligands [i.e., sodium borohydride (NaBH4), polyvinyl alcohol, glucose and galactose] on the preparation of nano-silver-supported activated carbon (AC). Ligand-stabilized Ag nanoparticle dispersion characteristics were also compared with those of ligand-free Ag nanoparticles. The nanoparticle distribution was investigated using a scanning electron microscope (SEM) which enabled a qualitative analysis of ligand-dependent nanoparticle adsorption onto AC. Silver nanoparticles with average sizes ranging from 7 to 20 nm were synthesized with different coatings. In particular, silver nanoparticles reduced and stabilized by NaBH4 were found to have a dense and homogenous dispersion of sizes in the range of 100–400 nm on the AC surface. These particles also seemed to remain on the AC surface after rinsing with water. The distribution of silver nanoparticles prepared in the presence of NaBH4/PVA was not as good as the one prepared with NaBH4. Their aggregate size varied from 300 to 600 nm on the AC surface and particles greater than 500 nm were eliminated from the AC surface upon rinsing with water. Glucose- and galactose-stabilized silver nanoparticles did not display an extensive adsorption and their adsorption seemed to be poor. However, glucose-stabilized silver nanoparticles could still be detectable to some extent after rinsing, while galactose-stabilized ones could not. Antimicrobial studies showed that all silver-containing carbons studied in this study inhibit bacterial growth and act as bacteriostatic agents.  相似文献   

16.
Monodisperse colloidal silver nanospheres were synthesized by the reaction of silver nitrate, hydroxylammonium hydrosulphate (NH2OH)2 · H2SO4 and sodium hydroxide in the presence of gelatin as stabilizer. Colloidal nanospheres were characterized by UV-vis absorption spectroscopy, transmission electron microscopy, X-ray diffraction and dynamic light scattering. X-ray diffraction data confirmed that the silver nanospheres were crystalline with face-centered-cubic structure. Transmission electron microscopy analysis revealed the formation of homogeneously distributed silver nanoparticles of spherical morphology and size of the nanoparticles was in the range of 0.7–5.2 nm. Silver nanospheres were stable for more than two months when stored at ambient temperature. Size and size distribution were studied by varying pH, reaction temperature, silver ion concentration in feed solution, concentration of reducing agent and concentration of the stabilizing agent. Catalytic activity of silver nanospheres was tested for the reduction reaction of nitro compounds in sodium borohydride solution. Monodisperse silver nanospheres showed excellent catalytic activity towards the reduction of aromatic nitro compounds. The reduction rate of aromatic nitro compounds had been observed to follow the sequence 4-nitrophenol > 2-nitrophenol > 3-nitrophenol.  相似文献   

17.
This paper describes the kinetics of the ceric ion-initiated graft co-polymerization of vinyl acetate-acrylonitrile to poly(vinyl alcohol). The graft copolymerization rate Rp was found to be first order with respect to the total concentration of the comonomer mixture [M], the concentration of vinyl alcohol repeating units [PVA], and the mole fraction of vinyl acetate in the comonomer feed mixture. Rp was independent of cerous ion. The grafting rate was independent of ceric ion above a ceric concentration of 0.0020 M but first order in ceric ion below that concentration. Rp initially increased rapidly with [H+] to a maximum and then decreased and levelled off at hgher [H+]. The rate of ceric ion disappearance was first order in [PVA], independent of [MI, and increased with increasing [H+] with a leveling off at high [H+]. A reaction mechanism.  相似文献   

18.
Platinum colloids in an aqueous solution catalyze the reduction of silver ions by hydrogen to form Pt-Ag core-shell bimetallic nanoparticles. In the presence of the silver nanoparticles, PtII ions are reduced by hydrogen to form AgcorePtshell nanoparticles. The effect of the structure and composition of the nanoparticles on the ability of platinum to catalyze the one-electron reduction of methyl viologen by hydrogen in an aqueous solution was studied. For the PtcoreAgshell nanoparticles, an induction period preceding the start of the reaction was found. The thicker the silver shell on platinum, the longer the lag time of the reaction, which is probably due to a decrease in the rate of hydrogen transfer to the platinum core. For the AgcorePtshell nanoparticles, the size effect was revealed: at the shell thickness less than 1 nm (~4 atomic layers of platinum), platinum loses the ability to catalyze the reaction. The mechanism of the catalytic process is discussed.  相似文献   

19.
Kinetics of the DL ‐valine‐ninhydrin reaction has been studied spectrophotometrically under varying conditions of [CTAB], [ninhydrin], [DL ‐valine], pH, temperature, and %(v/v) organic solvents (solvents used: 1‐propanol, methylcellosolve, acetonitrile, and dimethyl sulfoxide). Addition of CTAB and increase in the proportion of organic solvents, both showed catalyzing effect on the reaction. The effect of simultaneous presence of CTAB and DMSO in the reaction mixture has also been seen. The rate profiles obtained for solutions containing from 10% to 70% DMSO exhibited clear maxima that shifted progressively to higher concentrations of CTAB. The experimental results are explained in terms of specific solvent effects and the formation of stoichiometric hydrate DMSO · 2H2O and the inhibitory effect of DMSO on micelle formation. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 634–642, 2006  相似文献   

20.
The kinetics of formation of N‐diketohydrindylidenehistidinatocopper(II) complex has been investigated in the presence of cationic cetyltrimethylammonium bromide (CTAB) surfactant in aqueous medium (pH = 5.0). Similarly in aqueous solution, the reaction followed irreversible first‐order kinetics with respect to [Ninhydrin]. Although the reaction mechanism remained unaltered by micelles, a typical kψ‐[CTAB] profile was observed, that is, with a progressive increase in [CTAB], the reaction rate increased, reached a maximum value, and then decreased. The results are treated quantitatively in terms of the kinetic pseudo‐phase model. Activation parameters were also evaluated and a large decrease in ΔS# shows the formation of a well‐structured activated complex. It was found that anionic sodium dodecyl sulphate (SDS) and non‐ionic Triton X‐100 (TX‐100) surfactants have no effect on the reaction. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 729–736, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号