首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
By a new method of modeling, the DLVO energy interaction between rough nanoparticles and rough surfaces is investigated at various conditions. Rippled sphere model and surface element integration method are used. For calculation of energy interaction, the spherical coordinates are used and by increasing the radius ratio of two particles, the pseudo flat surfaces are generated. With increasing the radius ratio of two particles to 50, the large particle behaves as flat surface in front of small particle. Roughness, size of particles, temperature, zeta potential, capacity, and concentration of ions, which influence the stability of nanocolloidal solutions, are considered by the new method. Spherical coordinates enable to model the rough nanoparticles and rough surfaces so that no simplifying assumptions are needed, which was very difficult and time-consuming in Cartesian coordinate system. New method could predict the effect of different parameters on the stability of nanocolloidal systems precisely, easily, and at short times in comparison to Cartesian coordinate.  相似文献   

2.
Stability studies were conducted in different solutions (deionized water (DI), NaCl, CaCl2, and MgCl2) at different pH. Agglomeration and zeta potential were influenced by ionic strength, type of electrolyte, and the presence of dye stuff. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to analyze the stability and/or agglomeration of the nanoparticles in the different solutions. Repulsive or attractive forces stipulated by the DLVO theory were used to quantitatively discuss the results. The increase in ionic strength increased agglomeration which was linked to pHpzc, as there were minimal electrostatic repulsions at the pzc, yet the attractive van der Waals forces were dominant. Addition of the dye stuff significantly decreased the agglomeration as the dye stuff changed the overall zeta potential of TiO2 nanoparticles to negative across the entire pH which improved stability as there were particle–particle repulsions. Monovalent and divalent cations were compared and Ca2+ increased the mean diameter of nanoparticles as it effectively decreased the EDL of the nanoparticles, thus enhancing agglomeration. The DLVO theory was successful at explaining, in terms of the interaction energies between nanoparticles, the phenomena that caused either agglomeration or stability of the as-synthesized TiO2 nanoparticles in the different solutions.  相似文献   

3.
4.
The size of gold nanoparticle aggregates was controlled by manipulating the interparticle interaction. To manipulate the interparticle interaction of gold nanoparticles prepared by citrate reduction, we applied the substitutive adsorption of benzyl mercaptan on the particle surface in the absence of the cross-linking effect. Various experimental techniques such as UV-vis absorption spectroscopy, surface-enhanced Raman scattering, quasi-elastic light scattering, and zeta-potential measurement were used to characterize the nanoparticle aggregates. Our results suggest that the replacement of the trivalent citrate ions adsorbed on the nanoparticle surface with monovalent benzyl mercaptan ions should destabilize the particles, causing aggregation and hence the increase in the size of nanoparticle aggregates. These experimental results were successfully rationalized by the classical DLVO (Derjaguin-Landau-Vervey-Overbeek) theory that describes the interparticle interaction and colloidal stability in solution. Our findings suggest that the control of surface potential is crucial in the design of stable gold nanoparticle aggregates.  相似文献   

5.
Extended DLVO interactions between spherical particles and rough surfaces   总被引:6,自引:0,他引:6  
An "extended DLVO" approach that includes Lifshitz-van der Waals, Lewis acid-base, and electrostatic double layer interactions is used to describe interaction energies between spherical particles and rough surfaces. Favorable, unfavorable, and intermediate deposition conditions are simulated using surface properties representing common aquatic colloids and polymeric membranes. The surface element integration (SEI) technique and Derjaguin's integration method are employed to calculate interaction energy. Numerical simulations using SEI demonstrate that nanometer scale surface roughness features can produce a distribution of interaction energy profiles. Local interaction energies are statistically analyzed to define representative interaction energy profiles-minimum, average, and maximum-for various combinations of simulated particles and surfaces. In all cases, the magnitude of the average interaction energy profile is reduced, but the reduction of energy depends on particle size, asperity size, and density of asperities. In some cases, a surface that is on average unfavorable for deposition (repulsive) may possess locally favorable (attractive) sites solely due to nanoscale surface roughness. A weighted average of the analytical sphere-sphere and sphere-plate expressions of Derjaguin reasonably approximates the average interaction energy profiles predicted by the SEI model, where the weighting factor is based on the fraction of interactions involving asperities.  相似文献   

6.
The classical DLVO theory was applied to calculate the interaction potential energy between diamond particles in electroless nickel (EN) solution and its diluted solutions with deionized (DI) water to predict their dispersion and sedimentation rates. Sedimentation tests and particle size distribution for all particle dispersions were measured to verify the DLVO calculations. Results show that the curve features of interaction potential energy vary with the dilution ratio of dispersions. The energy barrier in the curves requires the minimum 1:100 dilution of the EN solution. A sufficient energy barrier results in an extremely slow sedimentation rate of particles by keeping them separate. Otherwise, they settle down quickly due to the agglomeration resulting from their attractive forces at any separation distance. The prediction results are in good agreement with the measurement of sedimentation tests and particle size distribution. The classical DLVO theory is applicable to the field of electroless plating.  相似文献   

7.
The colloid stability of synthetic titania particles was studied as a function of KCl concentration at pH values of 6.3, 6.7, and 8.4, using static light scattering to obtain stability ratios. Standard DLVO theory was then used to calculate the stability ratios as a function of salt concentration. Reasonable agreement between theory and experiment could only be obtained if an effective interaction radius, corresponding to surface asperities on the titania particles, was used in the calculation. High-resolution TEM images suggest that the effective interaction radius corresponds to the size of surface crystallites formed during synthesis.  相似文献   

8.
Aqueous film coatings often contain some electrolytes, organic acids, and pigments to give functions of sustained release, time-controlled release, or protection against light. Additions of some electrolytes or organic acids into latex dispersion for an aqueous film coating affect its colloidal stability. We characterized the aqueous polymeric latexes used in the pharmaceutical industry by measuring zeta potential and particle size, and evaluated this colloidal stability using DLVO theory. Three polymethacrylate-based aqueous polymeric latexes, Eudragit L30D-55, Eudragit RS30D and Eudragit NE30D, having anionic, cationic, and neutral polymer, respectively, were used in this study. The Hamaker constant of the polymethacrylate-based latex was determined to be 6.35 x 10(-21) J, and the total potential energy of the latex dispersion was calculated. The total potential energy of interaction between pairs of latex particles changes by altering the salt concentration and pH. The experimental results of stability in the anionic and the cationic latex dispersions can be explained by the total interaction energies. However, the stabilization of the neutral latex did not match the calculated result. The steric interaction produced by the surfactant likely resulted in the stable dispersion of this latex.  相似文献   

9.
A flexible docking algorithm was developed for studying the inclusion complexes of cyclodextrins with steroids in aqueous solution by an optimization method and an empirical function. The function is used to estimate the binding free energy including intermolecular interaction energy, the conformational energy change, and the solvation energy. The bimodal complexations of twelve steroids in β- and γ-CD cavities were studied by the algorithm. For the two orientations of the guests in the cavity, the possible binding regions were investigated, and the lowest energies for the inclusion complexes in the binding regions were obtained. The stability constant for each orientation was estimated from the optimized energy components by a quantitative model. Therefore, the preferential orientations of the guests were found out from the results finally.  相似文献   

10.
A flexible docking algorithm was developed for studying the inclusion complexes of cyclodextrins with steroids in aqueous solution by an optimization method and an empirical function. The function is used to estimate the binding free energy including intermolecular interaction energy, the conformational energy change, and the solvation energy. The bimodal complexations of twelve steroids in β- and γ-CD cavities were studied by the algorithm. For the two orientations of the guests in the cavity, the possible binding regions were investigated, and the lowest energies for the inclusion complexes in the binding regions were obtained. The stability constant for each orientation was estimated from the optimized energy components by a quantitative model. Therefore, the preferential orientations of the guests were found out from the results finally.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

11.
The coagulation and colloidal stability of tobacco mosaic virus (TMV) in alcohol-water-LiCl solutions were studied. Without the addition of LiCl salt, the coagulation was promoted by the increase of hydrophobicity of the alcohols that is proportional to their alkyl chain length and concentration. Addition of the LiCl salt reduced the electrostatic repulsion between TMV particles resulting in coagulation in methanol-water and ethanol-water solutions. In water-alcohol-LiCl mixture, the coagulation of TMV was driven by both the hydrophobic interaction of the solution and the screening effect of the salt simultaneously. To understand the particle-particle interaction during the coagulation, the interaction energy was calculated using DLVO theory. Considering the electrostatic repulsive energy, van der Waals attractive energy, and hydrophobic interaction energy, the total energy profiles were obtained. The experiment and model calculation results indicated that the increase of alcohol concentration would increase hydrophobic attraction energy so that the coagulation is promoted. These results provide the fundamental understanding on the coagulation of biomolecular macromolecules.  相似文献   

12.
In this work, the influence of chemical heterogeneity on the stability of nanocolloidal systems is surveyed with a new method. Zone of influence as a very important parameter for chemical patch surveying is modeled for sphere and flat surface. Surface chemical heterogeneity with specified properties, size, and position are created by spherical coordinate integration method. Rippled sphere model is used to create roughness and the flat surface is created by changing two sphere radius ratio. Using the spherical coordinate system for modeling of surface roughness and chemical heterogeneity is very accurate and fast. Results show that the patches could destabilize the colloidal system at very small sizes. Surface roughness reduces the effect of chemical patches for destabilizing the colloidal system, and with increasing the size of roughness the total DLVO energy interaction increases.  相似文献   

13.
The effect of pH on the colloidal stability of aqueous dispersions containing antimony-doped tin oxide (ATO) or indium tin oxide (ITO) nanoparticles and poly(vinyl acetate-acrylic) copolymer (PVAc-co-acrylic) latex particles was investigated using experimental observations and Derjiaguin, Landau, Verwey and Overbeek (DLVO) theory. The microstructure, electrical properties and optical properties of composite coatings prepared from various dispersions were also studied. Zeta potential measurements revealed that the isoelectric point (IEP) of ATO nanoparticles was below pH 2.0, that of ITO nanoparticles was at pH approximately 6.0 and that of PVAc-co-acrylic latex was at pH approximately 2.0. ATO/PVAc-co-acrylic dispersions prepared at pH 3 were stable, but those prepared at pH 1.5 formed aggregates, which settled quickly with time. DLVO theory predictions are in accord with these results. Stable ITO/PVAc-co-acrylic dispersions are obtained at a pH of 3.0 and 11.0, but dispersions are not stable at a pH of 6.0, the IEP of ITO. At a pH of 3.0, DLVO results predict attraction between ITO particles and latex particles. Dispersion pH affected the microstructures and properties of ATO (or ITO)/PVAc-co-acrylic coatings. Suspensions that formed aggregates produced coatings with lower percolation thresholds and lower transparencies than those produced from stable suspensions.  相似文献   

14.
姚雪霞 《化学研究》2008,19(4):56-59
运用分子动力学(Molecular dynamics,MD)和MM—PBSA(molecular mechanics/Poisson Boltzmann surfaeearea)相结合的方法预测了γ-环糊精(γ-cyclodextrin,γ-CD)和波尼松龙的包结模式.在MD模拟过程中,波尼松龙分别采用A环和D环两种取向从γ-CD大口端进入其空腔.在MD轨迹采样基础上,采用高效MM—PBSA方法计算了两种取向的包结自由能.结果表明,计算包结自由能值和实验包结自由能值非常吻合.进一步分析各个能量项,发现范德华相互作用能为包结的主要驱动力.通过比较两种取向的包结自由能大小,预测D环取向为优势包结模式.  相似文献   

15.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

16.
The atomic force microscope, together with the colloid probe technique, has become a very useful instrument to measure interaction forces between two surfaces. Its potential has been exploited in this work to study the interaction between protein (apoferritin) layers adsorbed on silica surfaces and to analyze the effect of the medium conditions (pH, salt concentration, salt type) on such interactions. It has been observed that the interaction at low salt concentrations is dominated by electrical double layer (at large distances) and steric forces (at short distances), the latter being due to compression of the protein layers. The DLVO theory fits these experimental data quite well. However, a non-DLVO repulsive interaction, prior to contact of the protein layers, is observed at high salt concentration above the isoelectric point of the protein. This behavior could be explained if the presence of hydration forces in the system is assumed. The inclusion of a hydration term in the DLVO theory (extended DLVO theory) gives rise to a better agreement between the theoretical fits and the experimental results. These results seem to suggest that the hydration forces play a very important role in the stability of the proteins in the physiological media.  相似文献   

17.
Nanoparticles have been an area of active research in recent years due to their properties, which can be greatly different from the bulk. In this work, we study the sintering of TiO2 nanoparticles using molecular dynamics simulations. Such sintering occurs in flame reactors where nanotitania is prepared via the chloride process. Decrease in free energy due to reduction in surface area is the main driving force for sintering of particles. Simulations, at various starting temperatures and orientations, indicate that the process of sintering is strongly affected by temperature and initial orientation. Extremely high diffusion of ions in the neck region of sintering nanoparticles supports the idea that solid-state diffusion is significant in metal-oxide nanoparticle sintering. It is found that the dipole-dipole interaction between sintering nanoparticles plays a very important role at temperatures away from the melting point. The duration of the simulation is not enough to observe the complete sintering process, but important initial stages are well studied.  相似文献   

18.
The DLVO force and potential energy of interaction between microspheres and topographically and chemically heterogeneous surfaces in aqueous solution are computed using a modification of the surface element integration approach. The heterogeneous surface has an array of cylindrical pillars of varying height, diameter, and arrangement to model different nano-topographies. In agreement with previous studies, the nano-topography decreases the size of the potential energy barrier for unfavorable surfaces because the pillars limit the minimum separation distance. The influence of topography is significant even for pillars several nanometers high and is more pronounced if the surface potential of the pillar tops differs from that of the underlying surface. A new force- and energy-averaging model is introduced as a simple method to compute the mean interaction energy or force between the particle and a heterogeneous surface, which differs significantly from a mean-field approach based on the average or nominal surface potential. Small variations in topography are found to remove large energy barriers to colloidal deposition. These results help explain the increased attraction of patchy surfaces towards particles relative to expectations based on typical DLVO calculations, which is particularly significant for surfaces with adsorbed polyelectrolytes.  相似文献   

19.
The aggregation stability of aqueous dispersions of microcrystalline cellulose (MCC) was studied by the flow ultramicroscopy in a wide range of pH (1–11). The calculations of the molecular and ion-electrostatic components of the interparticle interaction energy, which were performed according to the DLVO theory with and without allowance for the particle conductivity, demonstrated that, in most cases, the loss of the aggregation stability can not be explained without taking into account the concept of additional attraction forces between the MCC particles. It was assumed that such forces could be attributed to the dipole–dipole interactions or hydrogen bonding between hydrated particles.  相似文献   

20.
A scaling analysis of equilibrium orientation of diblock copolymer molecules on fractal surfaces and a brief comparison with a particular experiment is presented in this paper. This work is motivated by a recent experimental finding that a diblock copolymer film of polystyrene-PMMA, when deposited on a rough substrate, can orient its lamellae from a parallel to a perpendicular configuration depending on the topographical characteristics of the substrate surface. It was found that the RMS height itself is not enough to effect the equilibrium configuration, but the fractal dimension of the surface is also important. In general, the orientation of lamellae is a function of the the power spectral density (PSD) curves of the underlying substrate surface. Assuming the diblock lamellae to behave like an Alexander-deGennes brush, we obtain the free energy expressions for this brush in both parallel and perpendicular orientations in various asymptotic regimes. Comparison of their free energy expressions predicts the equilibrium configuration. By examining the PSD curves and using our scaling results, we are able to qualitatively explain some aspects of the experimental observations regarding the equilibrium orientation of the diblock copolymer lamellae on rough surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号