首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work studies the wettability alteration using nanoporous silica aerogels for enhanced oil recovery. Water wet flat glass and outcrop sandstone are used for this aim. Modified silica aerogels are synthesized with cheap water glass as the precursor, and ambient pressure drying method. Sessile drop method was used to measure the contact angles. Sandstones with 0° contact angle changed to mixed wet with 88° contact angle, and flat glasses with a 30° contact angle change to 70° contact angle. Results show that silica aerogels have a great potential in wettability alteration of reservoir rocks by adsorption and deposition mechanisms.  相似文献   

2.
More than 50% of oil is trapped in petroleum reservoirs after applying primary and secondary recovery methods for removal. Thus, to produce more crude oils from these reservoirs, different enhanced oil recovery (EOR) approaches should be performed. In this research, the effect of hydrophilic nanoparticles of SiO2 at 12 nm size, in (EOR) from carbonate reservoir is systematically investigated. Using this nanoparticle, we can increase viscosity of the injection fluid and then lower the mobility ratio between oil and nanofluid in carbonate reservoirs. To this end, a core flooding apparatus was used to determine the effectiveness and robustness of nanosilica for EOR from carbonate reservoirs. These experiments are applied on the reservoir carbonate core samples, which are saturated with brine and oil that was injected with nanoparticles of SiO2 at various concentrations. The output results depict that, with increasing nanoparticle concentration, the viscosity of the injection fluid increases and results in decreased mobility ratio between oil and nanofluid. The results confirm that using the nanoparticle increases the recovery. Also, increasing the nanoparticle concentration up to 0.6% increases the ultimate recovery (%OOIP), but a further increase to 1.0 does not have a significant effect.  相似文献   

3.
The synthesis and use in enhanced oil recovery applications of a novel CO2-philic surfactant derived from maleic anhydride and 2-butyl-1-octanol is reported. The synthesis involved the esterification of maleic anhydride to produce diester followed by sulfonation of the esterified product. The esterification reaction parameters were optimized for the maximum yield of 98.4%. By employing a silica sulfuric acid catalyst, the reaction kinetics of esterification were also investigated. The activation energy was found to be 45.58 kJ/mol. The sulfonation reaction of the esterified product was performed by using sodium bisulfite, and a yield of 82% of surfactant was achieved. The synthesized surfactant lowered the interfacial tension between CO2/brine to 3.1 mN/m and effectively reduced the CO2 mobility. This surfactant has a great potential to be used for CO2 mobility control for CO2?EOR applications.   相似文献   

4.
Wettability alteration is an important mechanism to increase recovery from oil and gas reservoirs. In this study, effect of fluorine-doped silica coated by fluorosilane nanofluid on wettability alteration of carbonate rock was investigated. The nanoparticle synthesized by sol-gel method was characterized using XRD, FTIR, SEM, and DLS. Adsorption of nanoparticle on rock was characterized by FESEM, and composition of rock after treatment was determined by EDXA. Effect of nanofluid on wettability was investigated by measuring static, advancing, and receding contact angle and surface free energy, imbibition of water, crude oil, and condensate of untreated and treated carbonate rock. Also, stability of contact angle and thermal stability of nanofluid were studied. ?Results show that contact angles for water, condensate, and crude oil were altered from 37.95°, 0°, ?and 0° to 146.47°, 145.59°, and 138.24°. In addition, water, condensate, and oil imbibition ?decreased more than 87, 88, and 80%, indicating that wettability was altered from strongly oil wet, ?condensate wet, and water wet to strongly gas wet. The ultraoleophobic and ultrahydrophobic stability were >48 hours and 120 minutes. Surface free energy of treated rock for water, crude oil, and condensate was ?2.24, 1.17, and 1.47mN/m. Thermal stability of nanofluids and adsorbed nanoparticle was up to 150°C.  相似文献   

5.
Different measurements were conducted to study the mechanisms of enhanced oil recovery (EOR) by surfactant-induced wettability alteration. The adhesion work could be reduced by the surfactant-induced wettability alteration from oil-wet conditions to water-wet conditions. Surfactant-induced wettability alteration has a great effect on the relative permeabilities of oil and water. The relative permeability of the oil phase increases with the increase of the water-wetness of the solid surface. Seepage laws of oil and water are greatly affected by surfactant-induced wettability alteration. Water flows forward along the pore wall in the water-wet rocks and moves forward along the center of the pores in the oil-wet rocks during the surfactant flooding. For the intermediate-wet system, water uniformly moves forward and the contact angle between the oil–water interface and the pore surface is close to 90°. The direction of capillary force is consistent with the direction of water flooding for the water-wet surface. While for the oil-wet surface, the capillary force direction is opposite to the water-flooding direction. The highest oil recovery by water flooding is obtained at close to neutral wetting conditions and the minimal oil recovery occurs under oil-wet conditions.  相似文献   

6.
Wettablity alteration of rock surface is an important mechanism for surfactant-based enhanced oil recovery (EOR) processes. Two salt and temperature-tolerant surfactant formulations were developed based on the conditions of high temperature (97–120°C) and high salinity (20 × 104 mg/L) reservoirs where a surfactant-based EOR process is attempted. Both the two sufactant formulations can achieve ultralow interfacial tension level (≤10?3 mN/m) with crude oil after aging for 125 days at reservoir conditions. Wettability alteration of core slices induced by the two surfactant formulations was evalutated by measuring contact angles. Core flooding experiments were carried out to study the influence of initial rock wettabilities on oil recovery in the crude oil/surfactant/formation water/rock system. The results indicated that the two formulations could turn oil-wet core slices into water-wet at 90–120°C and 20 × 104 mg/L salinity, while the water-wet core slices retained their hydrophilic nature. The core flooding experiments showed that the water-wet cores could yield higher oil recovery compared with the oil-wet cores in water flooding, surfactant, and subsequent water flooding process. The two surfactant formulations could successfully yield additional oil recovery in both oil-wet and water-wet cores.  相似文献   

7.
Tyrosinase encapsulated silica aerogel (TESA) was synthesized via an alcohol-free colloidal sol–gel route at room temperature and at neutral pH. Characterization on TESA indicated that 98% of enzyme was effectively loaded and located inside the aerogel network. TESA without solvent extraction showed higher tyrosinase activity than TESA extracted by amyl acetate/acetone (v/v:1/1). Stability of tyrosinase in TESA was enhanced towards extreme temperature, acidic and basic conditions. Optimization study indicates that 500 U enzyme/g silica aerogel; aged for 2 days, showed superior performance in the oxidation of catechol. The activity of TESA was remarkably enhanced; which was active at a wider temperature (up to 80 °C) and pH range (4–9). In contrast, free tyrosinase was totally inactive at these pH values and temperature >55 °C. TESA successfully removed about 90% of phenol in aqueous solution after 3 h of contact time with excellent reusability.  相似文献   

8.
Lamellar liquid crystals of the nonionic surfactant dodecyl polyoxyethylene (4) polyoxypropylene (5) ether (DEP) were investigated by means of phase diagram and rheological technique at 25°C in the presence of different solvents. The aqueous medium includes pure water, physiological saline and 20% sucrose solution, and the oil phase includes isopropyl myristate (IPM), oleic acid, and geraniol, which are all pharmaceutically accepted chemicals. The steady and dynamic rheological property analyses of the lamellar liquid crystals formed in DEP/H2O/IPM system indicate that the lamellar samples constructed by this special surfactant behave as pseudo-plastic fluid with relatively high elasticity and possess defects in their assembled structure. Also in this system, the elastic character gets decreased with increase in the water content. Furthermore, the comparison investigations show that the relatively high polar oil component increases the network strength of the lamellar phase, while increase in the polarity of water phase enhances the structure defects.  相似文献   

9.
10.
Sol-gel silica was doped with N,N-(dipropylcarbamothioyl) thiophene-2-carboxamide to investigate the sorption of cadmium (Cd) ions from aqueous media. In doped sol-gel silica, the large reagent molecules entrap into pores, whereas, small metal ions diffuse into pores where they make complex with doped reagent. This complexation can be accomplished by either ion exchange or chelation. Doped sol-gel sorbent was applied for removal of Cd(II) from aqueous solution in our study. Adsorption kinetics, adsorption isotherm, equilibration time, effect of initial concentration of adsorbate, and pH effect on the metal removal were studied to optimize the conditions. The prepared adsorbent shows rapid equilibrium and high stability toward high temperature and applied medium. In addition, desorption of metal ions was carried out by 1 M HCl and, thereafter, sol-gel silica adsorbent was regenerated and reused periodically.  相似文献   

11.
An experimental study on yield stress of water-in-heavy crude oil emulsions has been carried out by using a HAAKE RS6000 Rheometer with a vane-type rotor. Several factors such as oil volume fraction, shear rate, temperature, and emulsifying agent on the yield stress of emulsions were investigated. Zero shear viscosity of heavy crude oil was 6000 mPas at 30°C, with a density 955 kg/m3. This study shows that the yield stress increases linearly with the increasing shear rate, and displays an exponential decay with increasing the temperature and oil volume fraction. Although the addition of emulsifying agent enhanced the stability of the emulsion, to some extent it also increased the yield stress, especially for the emulsions with high oil volume fractions. Therefore, to reduce the start-up force for the pipeline transport of water-in-heavy crude oil emulsions, the starting rate should be decreased, temperature increased, or oil volume fraction increased. These results are helpful to improve the transportation of water-in-heavy crude oil in pipeline.   相似文献   

12.
The utilization of solid particles in aqueous foam has a great potential in improving fire fighting efficiency. In this study, aqueous foam supported by micro fly-ash (FA) was prepared and its stability in a specific type of oil was characterized. Firstly, different amount of FA was added to study the influence of FA concentration on foamability. It showed that within a specific extent, foam expansion ratio increased with the increasing of FA concentration. And compared with conventional foams, oil resistance of FA stabilized foams, which was investigated by analyzing drainage rate and evolution process with a self-made apparatus, was remarkably improved when FA concentration exceed 4.8wt.%. Secondly, SiO2 and Al2O3 particles with different median sizes were used to study the effect of particle size on stability. However, the smaller hydrophilic particles didn’t behave better as expected. Moreover, the foam stability in three hydrocarbons was evaluated in the same way. The results indicated that the short chain hydrocarbons had much stronger detrimental effect to both two-phase foam and three-phase foam. But overall, the three-phase foam stabilized by FA exhibited much better oil resistance, so it can be used as a promising material for pool fire extinguishing and prevention.GRAPHICAL ABSTRACT  相似文献   

13.
Cationic gemini silica sol (CGSS) was prepared via sol-gel method with tetraethoxysilane (TEOS) as a precursor and ethylene-bis (octadecyl dimethyl ammonium chloride) (EBODAC) as an additive. Inorganic salts, such as NaCl, KCl, MgCl2, and CaCl2 boost the gelation process while FeCl3 delays this process. Antibacterial ratio of treated cotton achieves 90.6% under the baking condition of 160°C for 3 minutes and warp-wise strength, break elongation and whiteness are less impacted under this baking condition. The antibacterial rate of cotton treated by the sols with vinyl tris (β-methoxyethoxy) silane (VTMES) used as the coupling agent still reached up to 81.2% after washing 30 times.   相似文献   

14.
The influence of synergistic interaction between sodium dodecylsulfate (SDS) and N,N-dimethyldodecan-1-amine oxide (DDAO) on their adsorption at air/water and solid/water interfaces at 20°C is investigated. The critical micelle concentration values obtained from surface tension measurements indicated strong synergism between SDS and DDAO, according to regular solution model. The excess surface concentration (Γ) and the minimum occupied area by single and mixed surfactant monomers (Amin) at liquid/air interface were also calculated. The adsorption onto the activated charcoal and silica was then measured to find out the correlation between surfactant synergism and their adsorption at solid/water interface. The amounts of surfactant adsorbed onto 1 wt% activated charcoal follow the trend: SDS/DDAO > DDAO > SDS. SDS molecules do not adsorb onto 5 wt% silica substrate, while SDS/DDAO mixed system was found to have the highest adsorption behavior. The obtained indicate that SDS can be removed from water by mixing it with amphoteric surfactant.  相似文献   

15.
16.
Lyotropic liquid crystalline of oleylpolyoxyethylene(20)(AEO20)/oil/water system was investigated at 25°C. The phase behavior, microstructure, and rheological properties of liquid crystalline were investigated by rheological techniques and polarizingoptical microscopy in the presence of various additives including Tween 80, sodium deoxycholate (NaDC), isoamylacetate, butyl acetate, isopropyl myristate. Diagrams show that cubic phase transforms to hexagonal phase when a shorter chain length oil is applied or NaDC or Tween 80 is added to the system.Flow experiments indicate the shear-thinning properties and a plastic behavior. The turning points of flow curves of the system AEO20 and system AEO20/NaDC were found. The dynamic modulus increase with increase in water content however the tendency is weaken by adding NaDC. Frequency dependence of experimental G ′ and G ′ were fitted using the multiple Maxwell model the cubic LLCs described by three relaxation times while hexagonal LLCs described by 5–8 elements. When AEO20 mixes with Tween 80, the hexagonal have a monotonic decrease distribution of relaxation times without valleys.  相似文献   

17.
18.
Bicontinuous and water-in-diesel microemulsions were formulated using single nonionic alkyl poly glycol ethers combined with hydrophilic alcohol ethoxylates. The phase behavior at temperatures ranging from 0°C to 50°C was investigated. Visual inspection as well as cross-polarizers were used to detect anisotropy. The fish phase diagrams were determined. The presence of the hydrophilic alcohol ethoxylates was necessary to initiate both types of microemulsions. Increasing the hydrophobic chain length of the surfactant led to a wider range of temperature stability at lower surfactant concentration. Meanwhile, increasing the ethylene oxide units in the headgroup by two units led to a phase diagram that is dominated by lyotropic liquid crystal. The formulated water in diesel microemulsions were tested experimentally in a 4-cylinder diesel engine. From this it is observed that the emissions of NOx, soot, and CO2 were reduced substantially compared to neat diesel, while for the CO the reduction occurs just at low load.   相似文献   

19.
Some factors in the preparation of triple Janus emulsions in a single-step bulk process were investigated using optical microscopy. The emulsions consisted of water, O.097 weight fraction, a commercial surfactant, Tween 80, 0.03 weight fraction, a vegetable oil (VO), 0.18 weight fraction, and a silicone oil (SO), 0.72 weight fraction. A surprising connection was found between the state of the compounds prior to mixing and the final morphology as well as stability of the emulsion. Separately adding the compounds or with the surfactant dissolved in the vegetable oil, prior to mixing, did not result in a Janus emulsion. Instead, simpler emulsions with limited stability were attained even with prolonged mixing. Storing the compounds together without mixing for two days followed by mixing resulted in a Janus emulsion in which the (VO + SO)/W/VO drops were more sparsely populated with Janus drops, and emulsion stability was limited. Finally, preparing the emulsion from the aqueous surfactant solution and the two oils gave a (VO + SO)/W/VO/SO emulsion with the W drops heavily populated by Janus drops and with improved stability.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号