首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

In this research, three different volume concentrations (??=?0.05, 0.1 and 0.2%) of Al2O3/water, CuO/water and Al2O3–CuO/water (50:50) nanofluids are prepared by adopting a two-step nanofluid preparation method. Al2O3 and CuO nanoparticles with the average diameter of 50 nm and 27 nm were dispersed in distilled water. The thermal conductivity and viscosity of prepared nanofluids are measured for different temperatures by using KD2 Pro thermal property analyzed and Brookfield viscometer, respectively. The effects of nanofluids on the thermal, electrical and overall efficiency of photovoltaic thermal (PVT) solar collector are also studied. The experimental results revealed that the thermal conductivity and viscosity increase with the increase in percentage volume concentration and viscosity decreases with the increase in temperature. Furthermore, the obtained maximum thermal and electrical efficiencies of a PVT solar collector for 0.2% volume concentration of hybrid nanofluids are 82% and 15%, respectively, at peak solar radiation. The highest overall efficiency of a PVT collector with .2% volume concentration of hybrid nanofluid was 97% at peak solar radiation. Results recommend that nanofluids can be used as a heat transfer in PVT solar collector.

  相似文献   

2.

Viscosity plays a crucial role in the flow and heat transfer process of nanofluids. To effectively calculate and predict the changing characteristics of nanofluids viscosity, this study presents a theoretical model combining the static interface layer and dynamic Brownian motion mechanisms of spherical nanoparticles for water-based Newtonian nanofluids. The model describes the reasonable dependences of nanofluids viscosity on physical properties of nanoparticles (density, volume fraction, size) and base fluid (temperature, viscosity, density). Taking four kinds of typical water-based Newtonian nanofluids containing spherical oxide nanoparticles (Al2O3, CuO, SiO2 and TiO2) as examples, the prediction performance of different viscosity models is analyzed in detail. From the comparison studies, it is demonstrated that the new viscosity model developed in this paper can exhibit better prediction performance than many well-known theoretical models and empirical correlations. Not only do the predicted results of model agree well with the experimental data from various studies, but also the effects of different factors are reflected effectively.

  相似文献   

3.

Turbulent flow characteristics and heat transfer applications of a twisted heat exchanger with 3-lobed cross section along with Y-tape insert are numerically studied. The working fluids for the simulations are pure water and water–Al2O3 nanofluid using two-phase mixture model. The study is carried out for various nanofluid volume fractions of 0.01, 0.02 and 0.03 with Reynolds number in the range of 5000–20,000. The effect of nanoparticles in heat transfer augmentation for smooth and lobed tubes is discussed based on presenting the highest thermal performance, which is a relation between heat transfer rate and pressure loss. Results show that implementing the twisted tube with Y-tape insert enhances the heat transfer more than the twisted tube. Relative Nusselt numbers for twisted tubes decrease with Reynolds number in comparison with the plain tube. Turbulent intensity, swirl number and tangential velocity of twisted tube with insert are higher than empty twisted tube indicating that inserting the Y-tape intensifies the turbulence and disturbs the fluid flow further. On the other hand, although the twisted tube increases the pressure drop more than plain tube, the case with Y-tape drastically increases the friction factor. So, the thermal performance of twisted tube with insert is lower than empty twisted tube. Adding nanoparticles to the base fluid has different influence on the investigated cases. It augments the relative Nusselt number inside plain tube and empty twisted tube with slight increment in friction factor. Increasing the nanoparticles concentration enhances the heat transfer rates for these cases while it does not increase the relative Nusselt number inside twisted tube with Y-tape insert at high Reynolds number and nanoparticle concentration. Moreover, it can be found that twisted tube with or without Y-tape insert is more efficient at low Reynolds number in comparison with the plain tube.

  相似文献   

4.
A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.  相似文献   

5.
A phenomenological formula has been proposed to describe the thermal conductivity of waterbased nanofluids. The formula has been derived based on available experimental data on nanofluids containing Al2O3 particles. It takes into account the dependence of the thermal conductivity coefficients of the nanofluids on both volume concentration and sizes of the particles. The formula has also been shown to describe with an accuracy of about 3% the thermal conductivity coefficients of nanofluids containing TiO2, SiO2, ZrO2, and CuO particles with sizes of 8–150 nm and volume concentrations as high as 8%.  相似文献   

6.

Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al2O3/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al2O3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (Nu) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.

  相似文献   

7.

The heat transfer performance and entropy analysis are done in a compact loop heat pipe (CLHP) with Al2O3/water and Ag/water nanofluid. A compact loop heat pipe having a flat square evaporator with dimensions of 34 mm (L)?×?34 mm (W)?×?19 mm (H) has been fabricated and tested for the heat load ranging from 30 to 500 W. The experimental tests are conducted by keeping the CLHP in the vertical orientation with distilled water, silver (Ag)/water and aluminium oxide (Al2O3)/water nanofluid having low volume concentrations of (0.09% and 0.12%). The effect of wall and vapour temperature, evaporator and condenser heat transfer coefficient, thermal resistance on the applied heat loads is experimentally investigated and compared. The experimental results showed that the evaporator thermal resistance is reduced by 34.70% and 20.21%, respectively, for 0.12 vol% of Ag, Al2O3 nanoparticles when compared with that of the distilled water. For the same volume concentrations of Ag, Al2O3 nanoparticles, an enhancement of 34.52%, 23.7%, 39.27% and 30.8%, respectively, observed for the convective heat transfer coefficients at the evaporator and condenser. The entropy is also reduced by 19.08% and 11.58% when Ag and Al2O3 nanofluids are used as the operating fluid. From the experimental tests, it is found that the addition of small amount of Ag nanoparticles in the working fluid enhanced the operating range by 15% when compared with that of Al2O3/water nanofluid without the occurrence of any dry-out conditions.

  相似文献   

8.
《印度化学会志》2021,98(11):100200
For the first time, the heat transfer performance of a CuO–ZnO (80:20)/water hybrid has been studied experimentally and numerically in a shell and tube heat exchanger under turbulent flow conditions nanofluid (STHE). All experiments are carried out with 0.01 ​vol% CuO–ZnO (80:20)/water hybrid nanofluid at Reynolds numbers (NRe) ranging from 1900 to 17,500. The stabilized hybrid nanofluids (30 ​°C-Tube side) are then used as a coolant to reduce the hot fluid (60 ​°C-shell side) temperature using a STHE, with the results for the convective heat transfer coefficient, Nusselt number, friction factor, and pressure drop reported. The primary goal of this paper is to investigate the impact of hybrid nanoparticle mixing ratio optimization on STHE heat transfer efficiency under various operating conditions. According to the findings, the CuO–ZnO (80:20)/water hybrid nanofluid improved the heat transfer performance of the STHE at all Reynolds numbers. When using nanofluid over water, the Nusselt number and pressure drop were improved by approximately 33% and 13%, respectively. The hybrid nanofluid's maximum thermal performance factor and thermal efficiency enhancement were 1.45 and 7%, respectively, at NRe ​= ​17,500. According to the study, the thermal conductivity of nanofluid varies by only 5% after ten trials. Furthermore, the ANSYS Fluent program was used to predict the behavior of the hybrid nanofluid in STHE, and the simulation results fit the experimental values very well.  相似文献   

9.
Monodispersed and hydrophobic ZnO/Al2O3 composite nanoparticles are prepared by a nonhydrolytic sol–gel method. ZnCl2 and AlCl3 are dissolved in acetone and used as precursors. Oleic acid is adopted as an oxygen donor. The tribology properties of the prepared ZnO/Al2O3 composite nanoparticles are studied by the four-ball friction and thrust ring friction test. It is demonstrated that the average friction coefficient and the wear scar diameter are reduced by 37.5 and 26.2%, respectively, in comparison with pure lubricating oil. Moreover, the ZnO/Al2O3 composite nanoparticles bear the merits of ZnO and Al2O3 when used as lubricant additives, exhibiting both excellent antifriction and antiwear behaviors simultaneously. The ZnO/Al2O3 composite nanoparticles improve the lubrication effect not only by turning the sliding friction into rolling friction, but also forming a hard Al2O3 protective film onto the thrust-ring surface containing ZnO/Al2O3 nanoparticles, which have much potentiality in industrial applications.  相似文献   

10.
采用普通浸渍和超声改性的方法分别制备了CuO/Al2O3-MgO催化剂,用于超低浓度甲烷的催化燃烧,并利用SEM、XRD、XPS、H2-TPR等技术对催化剂进行表征,研究了超声改性作用对催化剂的结构和性能的影响.结果表明,与普通浸渍法制备的催化剂相比,在超声改性的CuO/Al2O3-MgO催化剂上,甲烷的转化率得到提高,燃烧特征温度降低.随着超声时间的延长和超声功率的增加,催化剂的催化活性均呈现先增大后减小的趋势;催化剂制备的最佳超声工况为功率150 W、时间20 min.超声改性可使催化剂的比表面积和孔容积增大,表面催化活性较高的Cu+浓度增加,活性组分CuO由晶相向非晶相转变、分散度增大,晶粒粒径变小、分布更均匀;这使得甲烷催化燃烧的表观活化能下降、催化剂活性得到增强.  相似文献   

11.
In order to enhance the thermal properties of turbine oil (TO), three different nanoparticles (CuO, Al2O3, and TiO2) are loaded into the TO. To measure the thermal performance of nanoparticle-based TO nanofluids at laminar flow and under constant heat flux boundary conditions, an experimental setup was applied. The obtained data clearly demonstrate the positive effect of all nanoparticles on the heat transfer rate of TO. As the most important factor, the heat transfer coefficient of the abovementioned two-phase systems is increased upon increasing both the volume concentration and the flow rate. An adaptive neuro-fuzzy inference system (ANFIS) is applied for modeling the effect of critical parameters on the heat transfer coefficient of nanoparticle-TO based nanofluids numerically. The results are compared with experimental ones for training and test data. The results suggest that the developed model is valid enough and promising for predicting the extant of the heat transfer coefficient. R2 and MSE values for all data were 0.990208751 and 108.1150734, respectively. Based on the results, it is obvious that our proposed modeling by ANFIS is efficient and valid, which can be expanded for more general states.  相似文献   

12.
Conventional heat transfer fluids such as water and ethylene glycol (EG) can be used for cooling fluids in car radiators, and have relatively poor heat transfer performance. One method for increasing heat transfer in car radiators uses nanofluids. Nanofluids as a new technology are obtained by dispersing nanoparticles on the base fluids. In the present study, CuO (60 nm) nanoparticles were used in a mixture of water/EG as a base fluid. Then, the thermal performance of a car radiator was studied. The experiment was performed for different volumetric concentrations (0.05–0.8 vol%) of nanofluids of different flow rates (4–8 lit/min) and inlet temperatures (35, 44, 54°C). The results showed that nanofluids clearly enhanced heat transfer compared to the base fluid. In the best condition, the heat transfer coefficient enhancement of about 55% compared to the base fluid was recorded.  相似文献   

13.
Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” The Hamilton–Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.  相似文献   

14.

High-performance cooling is of vital importance for the cutting-edge technology of today, from nanoelectronic mechanical systems to nuclear reactors. Advances in nanotechnology have allowed the development of a new category of coolants, termed nanofluids that have the potential to enhance the thermal performance of conventional heat transfer fluids. At the present time, nanofluids are a controversial research theme, since there is yet no conclusive answer to explain the underlying physical mechanisms of heat transfer. The current study investigates experimentally the heat and mass transfer behaviour of dilute Al2O3–H2O nanofluids under turbulent natural convection—Rayleigh number of the order of 109—in a cubic Rayleigh–Bénard cell with optical access. Traditional heat transfer measurements were combined with a velocimetry method to obtain a deeper understanding of the impact of nanoparticles on the heat transfer performance of the base fluid. Particle image velocimetry was employed to quantify the resulting mean velocity field and flow structures in dilute nanofluids under natural convection, at three parallel planes inside the cubic cell. All the results were compared with that for the base fluid, i.e. deionised water. It was observed that the presence of a minute amount of Al2O3 nanoparticles in deionised water, φv =?0.00026 vol.%, considerably modifies the mass transfer behaviour of the fluid in the bulk region of turbulent Rayleigh–Bénard convection. Simultaneously, the general heat transport, as expressed by the Nusselt number, remained unaffected within the experimental uncertainty.

  相似文献   

15.
Turbulent convective heat transfer of graphene–water nanofluids with various concentrations inside a uniformly heated circular tube is studied experimentally. For this purpose, experiments are conducted to measure thermal conductivity, viscosity, pressure drop, and heat transfer coefficient. Results show enhancement of thermal conductivity and moderate increment of viscosity with addition of low amounts of nanoparticles. Moreover, heat transfer coefficient shows relatively high augmentation, and pressure drop remains unchanged. The maximum enhancements are 10.30%, 4.95%, and 6.04% for thermal conductivity, viscosity, and heat transfer coefficient, respectively. UV–Vis spectroscopy results show that the nanofluids are highly stable.  相似文献   

16.
The vapour phase synthesis of quinoline from aniline and glycerol (1:2 mole ratio) in a single step was investigated over ZnO–Cr2O3, CuO–ZnO/Al2O3, MoO3–V2O5/Al2O3 and NiO–MoO3/Al2O3 catalysts in the presence of air at 623–723 K under normal atmospheric pressure. Among these catalysts investigated, the CuO–ZnO/Al2O3 combination effectively performed this reaction with high activity and selectivity.  相似文献   

17.
在制备CuO/ZnO/Al2O3催化剂的老化过程中,采用微波辐射老化技术,着重研究了溶剂极性对前躯体物相组成,烧后CuO/ZnO/Al2O3催化剂结构及其在浆态床合成甲醇工艺中催化性能的影响。通过XRD、DTG、H2-TPR,FTIR、HR-TEM和XPS对前驱体及催化剂表征表明,沉淀母液在微波辐射条件下进行老化,溶剂的极性对前躯体物相组成及催化剂结构影响显著。随着溶剂极性的增大,Zn2+/Cu2+取代Cu2(CO3)(OH)2/Zn5(CO3)2(OH)6中Cu2+/Zn2+的取代反应增强,使得前躯体中(Cu,Zn)5(CO3)2(OH)6和(Cu,Zn)2(CO3)(OH)2物相的含量增多,结晶度提高,导致烧后CuO/ZnO/Al2O3催化剂中CuO-ZnO协同作用增强,且CuO晶粒减小,表面Cu含量增加,催化剂活性和稳定性提高。水溶剂的极性最大,制备的催化剂活性和稳定性最好,甲醇的时空收率(STY)和平均失活率分别为320 mg.g-1.h-1和0.11%.d-1。  相似文献   

18.
The effect of dielectric loss on the electrorheological (ER) characteristic of dielectric nanofluids under shear was studied. When nanofluids are activated by an applied electric field, it behaves like a non-Newtonian fluid under ER effect by creating the chains of nanoparticles. ER characteristics of ZnO and Al2O3 nanofluids with various nanoparticles concentration (0.1, 0.05, 0.01 wt%) were measured. For this purpose, a solenoid-based electromagnetic (EM) transmitter was used under different propagation media including air, tap water, and salt water. The result shows that all the nanofluids exhibit pseudo-plastic behavior, while the electric field causes a significant increase in viscosity in the presence of tap water, followed by salt water. Additionally, the viscosity of nanofluid shows a high dependence on particle loading. A possible mechanism was also proposed to describe the effect of dielectric properties on the ER behavior of dielectric nanofluids.  相似文献   

19.

In this study, the effect of temperature and mass fraction of Al2O3 and WO3 nanoparticles dispersed in deionized water and liquid paraffin was investigated on dynamic viscosity of nanofluid. The results of the TEM tests showed that the size of Al2O3 and WO3 nanoparticles was ranged from 10 to 60 nm, and the results showed that nanoparticles were semi-spherical. Also the results of DLS and zeta potential tests, respectively, exhibited the uniform size and high stability of the nanoparticles in the basefluid environment. The findings showed that adding a certain amount of nanoparticles to water and liquid paraffin increases dynamic viscosity, and in the case of various shear rates, the viscosity is constant for the water-based nanofluids, which indicates the Newtonian behavior of the nanofluid. In addition, for those prepared by liquid paraffin as a basefluid, the viscosity does not remain constant at different shear rates and at low amount of shear rate the viscosity achieves higher value, indicating non-Newtonian behavior of liquid paraffin-based nanofluids. The results showed that by increasing the temperature in liquid paraffin-based nanofluid the uniformity and linearity of the viscosity curve at various shear rates could be observed, which represents an approach for Newtonian behavior of nanofluid at higher temperatures. These results also showed that with increasing the mass fraction of nanoparticles in water and liquid paraffin, the viscosity increases at different shear rates. Finally, the correlation presented in this study shows that for nanofluid viscosity as a function of nanoparticles load and temperature, the deviation of correlated data from experimental values is less than 10%.

  相似文献   

20.
Convective heat transfer characteristics of water/Al2O3 nanofluid flow inside a tube were evaluated in this study. A non-uniform concentration distribution was used in thermal dispersion model. Meanwhile, an experimental study was done to find the dispersion coefficient in addition to assess the accuracy of simulation results. The accuracy of the results of thermal dispersion model was compared with the numerical solution using discrete phase modeling and homogenous method, while the effective parameters on particle migration were considered to find the particle distribution for being used in the dispersion model. Non-uniformity of the particle distribution is increased by raising volume fraction and Reynolds number. Concentration distribution was obtained using discrete phase method and was compared with the distribution employed for the dispersion model. When a uniform concentration is used in the dispersion model, error of prediction is expected to be increased. The thermal dispersion model, in which the particles have followed a non-uniform distribution, provides acceptable results in spite of its lower calculational time as compared to the two-phase approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号