首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过向明胶溶液中加入硫酸钠溶液的单凝聚方法以及将明胶溶液加入到阿拉伯胶溶液的复凝聚方法,制备了聚合物包覆昆虫激素十二醇的水分散体系微胶囊.通过对凝聚过程中ζ电位与透光率跟踪测试确定了单凝聚中加入硫酸钠的最佳用量以及复凝聚中明胶与阿拉伯胶的相对量.在壁材浓度大于或等于3%条件下制备的复凝聚胶囊的尺寸大于单凝聚微胶囊,但后者的大小分布更均一.除非在2%壁材浓度下,其他条件下复凝聚制备的胶囊的十二醇包覆率明显高于单凝聚胶囊.对胶囊中十二醇在恒湿恒温条件下的释放研究表明,单凝聚胶囊中十二醇很快释放完毕,变化壁材浓度不明显改变其释放行为.相比之下复凝聚胶囊中十二醇的释放对壁材浓度有明显的依赖性.2%壁材浓度制备的胶囊其释放行为类似于单凝聚胶囊;但3%到5%壁材浓度制备的胶囊中十二醇的释放明显分为3个区间,即较快的初始释放、较长时间的恒速释放以及最后阶段释放速率的再次提高直至释放完毕.复凝聚胶囊中十二醇的释放表现出了明显的可控性.文中亦对该体系中昆虫激素十二醇的释放机理作了初步讨论.  相似文献   

2.
Complex coacervation was proposed to play a role in the formation of the underwater bioadhesive of the Sandcastle worm (Phragmatopoma californica) based on the polyacidic and polybasic nature of the glue proteins and the balance of opposite charges at physiological pH. Morphological studies of the secretory system suggested that the natural process does not involve complex coacervation as commonly defined. The distinction may not be important because electrostatic interactions likely play an important role in the formation of the sandcastle glue. Complex coacervation has also been invoked in the formation of adhesive underwater silk fibers of caddisfly larvae and the adhesive plaques of mussels. A process similar to complex coacervation, that is, condensation and dehydration of biopolyelectrolytes through electrostatic associations, seems plausible for the caddisfly silk. This much is clear, the sandcastle glue complex coacervation model provided a valuable blueprint for the synthesis of a biomimetic, water-borne, underwater adhesive with demonstrated potential for repair of wet tissue.  相似文献   

3.
Cells organize their interior through membrane-bound organelles and through membraneless condensates that are formed by liquid–liquid phase separation (LLPS). The complex process of coacervation that is involved in LLPS is challenging to study in living cells. Hence, studying coacervation in cell-mimicking synthetic containers can yield valuable insights. Here, we review recent progress with respect to studying LLPS (particularly coacervation) in artificial compartments, from water-in-oil droplets to membranous liposomes. We describe different strategies to form and control coacervates in microconfinements and to study their physicochemical and biological characteristics. We also describe how coacervation can itself be used in container formation. This review highlights the importance of in vitro coacervate studies for understanding cellular biology and for designing synthetic cells.  相似文献   

4.
Glutaraldehyde-crosslinked O-carboxymethyl chitosan (O-CMC)–gum Arabic (GA) coacervates were characterized against coacervation acidity. As the coacervation pH increased from 3.0 to 6.0, the crosslinking degree of the coacervates and its sensitivity to glutaraldehyde concentration variation declined gradually, but the elasticity increased markedly. Crosslinking improved the structure compactness and thermal stability of the coacervates and high coacervation pH favored the increase of the two parameters, but a reverse trend was observed regarding swelling ratio in the simulated gastric fluid. It was concluded that glutaraldehyde-crosslinked O-CMC–GA coacervates with required properties could be tailored by selecting an appropriate complexation acidity.  相似文献   

5.
Polyelectrolyte-colloid coacervation could be viewed as a sub-category of complex coacervation, but is unique in (1) retaining the structure and properties of the colloid, and (2) reducing the heterogeneity and configurational complexity of polyelectrolyte-polyelectrolyte (PE-PE) systems. Interest in protein-polyelectrolyte coacervates arises from preservation of biofunctionality; in addition, the geometric and charge isotropy of micelles allows for better comparison with theory, taking into account the central role of colloid charge density. In the context of these two systems, we describe critical conditions for complex formation and for coacervation with regard to colloid and polyelectrolyte charge densities, ionic strength, PE molecular weight (MW), and stoichiometry; and effects of temperature and shear, which are unique to the PE-micelle systems. The coacervation process is discussed in terms of theoretical treatments and models, as supported by experimental findings. We point out how soluble aggregates, subject to various equilibria and disproportionation effects, can self-assemble leading to heterogeneity in macroscopically homogeneous coacervates, on multiple length scales.  相似文献   

6.
Hydrolytic properties of thermoresponsive biopolymers with amphiphilic structures, gamma-PGA-P, were investigated. Hydrolysis was monitored in terms of molecular weight changes using GPC and spectroscopic measurements. The hydrolytic degradation of gamma-PGA-P was controlled by a change in the degree of propyl group conversion, reaction temperature, and/or reaction pH. The degradation was classified as the rapid elimination of propyl side chains and the moderate cleavage of peptide linkages in the backbone. Furthermore, hydrophobic environments established by the thermoresponsive coacervation of gamma-PGA-P60 solutions inhibited hydrolytic degradation reactions. Inversely, hydrolytic degradations increased coacervation temperatures. Kinetic studies of hydrolytic reactions suggest that the degradation rate of gamma-PGA-P60 solutions can be controlled by their thermoresponsivity. The hydrolysis reported here represents the first degradation rate controlled by thermoresponsive coacervation.  相似文献   

7.
Phthalocyanine green G modified with hyperdispersants was dispersed in tetrachloroethylene. Dispersibility and zeta potential of modified phthalocyanine green G in tetrachloroethylene were studied. The phthalocyanine green G particles modified with hyperdispersants were characterized by FTIR and SEM. E‐Ink containing dispersion liquid of phthalocyanine and tetrachloroethylene was prepared by coacervation, in situ polymerization, and interfacial polymerization. E‐Ink prepared by coacervation and in situ polymerization had a reversible electric response.  相似文献   

8.
Soy glycinin microcapsules by simple coacervation method   总被引:3,自引:0,他引:3  
Encapsulation of a dispersed oil phase (hexadecane) was realized by simple coacervation method using soy glycinin as the wall forming material. Suitable emulsification and coacervation conditions, that favor the formation of microcapsules wall, were identified and investigated. Mild acid (pH 2.0) and heat (55 degrees C) treatments of the reaction medium during the emulsification step enhanced significantly the deposition of coacervated glycinin around oil droplets. A pronounced correlation between glycinin concentration in the continuous phase, specific surface of the dispersed phase and the microencapsulation efficiency was also observed. Coacervation step study concerned the morphology and the stability of microcapsules. Controlled initiation of the coacervation, by slow readjustment of the pH, allowed a homogeneous precipitation of glycinin around oil droplets as well as the absence of aggregation phenomena. Since the morphology of microcapsules was considerably affected by a prolonged stirring of the reaction medium, the coacervation and reticulation time were optimized in order to preserve the homogeneity of the microcapsules size distribution and the microencapsulation efficiency.  相似文献   

9.
微乳中纳米胶囊的复凝聚法制备   总被引:8,自引:0,他引:8  
在O/W型APG微乳液模板上, 以明胶和阿拉伯树胶作为包裹材料, 用复凝聚的方法制备纳米胶囊, 对影响纳米胶囊的合成条件进行了分析. 用粒度仪测定产物的粒径及其分布, 用透射电镜观察产物的形貌. 结果表明, 用复凝聚法在微乳中合成了粒度均匀、粒径30~100 nm的球性纳米胶囊. 考察了微乳液的组成、高分子的浓度和复凝聚的条件对纳米胶囊性质的影响. 纳米胶囊对氯氰菊酯的包裹率较高, 在60%以上. 本方法条件温和, 操作简单, 是一种新型的纳米胶囊合成技术.  相似文献   

10.
Complex coacervation between proteins and polysaccharides is a demixing process mainly driven by electrostatic interactions. During this process many structural transitions occur, involving the formation of soluble complexes, aggregated complexes, and coacervates. The dynamic mechanism of complexation/coacervation was studied on beta-lactoglobulin (BLG)/Acacia gum (AG) mixed dispersions (0.1 wt% total concentration; BLG:AG ratio of 2:1) using small angle static light scattering (SALS). Acidification of BLG/AG dispersions was induced by dissolution of 0.11 wt% glucono-delta-lactone, allowing in situ SALS measurements. Time evolution of turbidity, scattered light intensity at 46 degrees scattering angle (I46) or slope of scattering functions at high q range revealed the existence of six pH-induced structural transitions. During BLG/AG complexation and before coacervation took place, scattering profiles displayed a monotonic decrease of I(q) as a function of q. A correlation peak in the scattering functions was only observed when coacervates appeared in the system. The wave vector q(max) corresponding to the maximum in scattered intensity first shifted toward larger q values, indicating an increasing number of coacervates, then shifted toward smaller q values, as a consequence of the system coarsening. The power laws q(max) approximately t(-alpha) and I(max) approximately t(-beta) gave values of 1.9 and 9.2, respectively, values much larger than those expected for intermediate and late stages of spinodal decomposition. From these results, it was concluded that complex coacervation between BLG and AG was a nucleation and growth type process. In addition, the temporal evolution of I46 followed power laws with two different exponents. First exponent corresponding to BLG/AG complexation was 3.0+/-0.3 and indicated a diffusion-controlled growth mechanism. Second exponent corresponding to the initiation of phase separation to the coacervation process was 6.5+/-0.3 and revealed an interfacially-controlled growth mechanism.  相似文献   

11.
大豆分离蛋白-十二烷基硫酸钠微胶囊的制备与表征   总被引:1,自引:0,他引:1  
朱晓丽  刘维鹏  顾相伶  孔祥正 《化学学报》2009,67(13):1497-1502
以大豆分离蛋白(SPI)和十二烷基硫酸钠(SDS)为壁材, 以十六烷为芯材, 通过复凝聚法制备了微胶囊. 首先确定了SPI和SDS发生复凝聚的适宜pH、SPI/SDS配比、壁材浓度等. 在确定的实验条件下进行复凝聚, 凝聚物产率可达85%. 改变搅拌转速和芯壁比, 考察它们对微胶囊性能的影响. 用光学显微镜观察了微胶囊形貌. 用气相色谱测定了微胶囊的载药量和包覆率. 芯壁比为2、搅拌转速为400 r/min时所制备微胶囊的载药量可达61%. 随着芯壁比的增大, 微胶囊粒径及载药量都逐渐增大.  相似文献   

12.
The soft particle analysis theory was applied to plant proteins and polysaccharides in solution, to determine the charge density of these polymers and the depth of the layer accessible by counterions according to pH conditions. In addition to the macromolecule shape characterized by light scattering measurements, these properties are also correlated with the optimum coacervation condition, so as to establish the prevalent plant protein-polysaccharide interactions governing the coacervate formation. Globulin was found to be highly charged and spherically shaped. The best coacervation condition was obtained at the pH value, which corresponds to the protein conformation with a dense and compact accessible layer. On the contrary, for the alpha gliadin, bearing a lower charge, a more extended conformation seems to be more favourable. For the plant proteins studied, the coacervation seems to be controlled by the structure of the counter polyanion used: from our model, it turns out that the rod-like structure of arabic gum observed at acidic pH allows the interaction with plant proteins to form coacervates, contrary to the highly charged and spherical structure of alginate.  相似文献   

13.
The coacervation of tropoelastin represents the first major stage of elastic fiber assembly. The process has been modeled in vitro by numerous studies, initially with mixtures of solubilized elastin, and subsequently with synthetic elastin peptides that represent hydrophobic repeat units, isolated hydrophobic domains, segments of alternating hydrophobic and cross-linking domains, or the full-length monomer. Tropoelastin coacervation in vitro is characterized by two stages: an initial phase separation, which involves a reversible inverse temperature transition of monomer to n-mer; and maturation, which is defined by the irreversible coalescence of coacervates into large species with fibrillar structures. Coacervation is an intrinsic ability of tropoelastin. It is primarily influenced by the number, sequence, and contextual arrangement of hydrophobic domains, although hydrophilic sequences can also affect the behavior of the hydrophobic domains and thus affect coacervation. External conditions including ionic strength, pH, and temperature also directly influence the propensity of tropoelastin to self-associate. Coacervation is an endothermic, entropically-driven process driven by the cooperative interactions of hydrophobic domains following destabilization of the clathrate-like water shielding these regions. The formation of such assemblies is believed to follow a helical nucleation model of polymerization. Coacervation is closely associated with conformational transitions of the monomer, such as increased β-structures in hydrophobic domains and α-helices in cross-linking domains. Tropoelastin coacervation in vivo is thought to mainly involve the central hydrophobic domains. In addition, cell-surface glycosaminoglycans and microfibrillar proteins may regulate the process. Coacervation is essential for progression to downstream elastogenic stages, and impairment of the process can result in elastin haploinsufficiency disorders such as supravalvular aortic stenosis.  相似文献   

14.
Gelatin-gum arabic spherical multinuclear microcapsules (SMMs) encapsulating peppermint oil were prepared by complex coacervation. Transglutaminase (TG) was used to harden the SMMs by complex coacervation instead of traditional reagents such as formaldehyde or glutaraldehyde. The effect of various cross-linking parameters on the hardening effectiveness of SMMs containing peppermint oil was investigated. The optimum parameters were as follows: hardening for 6h at 15 degrees C and pH 6.0 with a TG concentration of 15 U/g gelatin. Compared with formaldehyde, TG exhibits similar microcapsule hardening effectiveness.  相似文献   

15.
WU  Ke-Gang CHAI  Xiang-Hua CHEN  Yue 《中国化学》2005,23(11):1569-1572
To improve the oxidative stability and application of fish oil, it was microencapsulated by simple coacervation followed by spray drying. Simple coacervation took place by adding malt dextrin into the emulsion of fish oil and hydroxypropyl methylcellulose (HPMC) solution. Influences of several process parameters on the microencapsulation were evaluated and the oxidative stability and microstructure of microcapsules were analyzed. Results showed that the coacervation could be observed only when dextrose equivalent value (DE value) of malt dextrin, concentration of HPMC solution and fish oil percentage in microcapsules were no more than 20. 5% and 40%, respectively. Moreover, microencapsulation efficiency was higher at HPMC solution concentration of 4% and fish oil percentage of less than 30%. The oxidative stability of fish oil was improved by the microencapsulation and done best in the ease of replacing malt dextrin by 40% with acacia. Scanning electronic microscopic photographs showed that the microcapsule obtained was a round, smooth and hollow microcapsule with its wall made up of innumerable small and solid submicrocapsules with the core of fish oil.  相似文献   

16.
Complex coacervation has been investigated on mixtures of beta-lactoglobulin (beta-lg) and acacia gum (AG) at pH 4.2 where these two macromolecules interact electrostatically. Changes in beta-lg/AG complex coacervation induced by the presence of beta-lg aggregates were considered. The nature and structure of particles resulting from complex coacervation were determined by using confocal scanning laser microscopy (CSLM). CSLM revealed fundamental differences in the structure of each of the studied dispersions (at 1 wt.% total concentration). Spherical vesicular coacervates and precipitates (based on beta-lg aggregates) were the hallmark of BLG/AG dispersions (beta-lg dispersion containing insoluble aggregates). Only coacervates were visible in AF-BLG/AG dispersions (beta-lg dispersion free of insoluble aggregates). The latter were characterised by the presence of large foam-like coacervates induced by partial coalescence of single coacervates, especially at the 2:1 protein to polysaccharide (Pr:Ps) ratio. Diffusing wave spectroscopy (DWS) was used to study the stability of dispersions as a function of time. Depending on the Pr:Ps ratio and the presence of beta-lg aggregates, the intensity correlation function (g(2)(t)) shifted to lower correlation times rapidly after mixing of both macromolecules. This revealed the formation of a large number of small particles, characterised by faster Brownian motion. At 1 and 5 wt.% total concentration, the 8:1 Pr:Ps ratio exhibited a rapid decrease of the backscattered intensity in time, both for BLG/AG and AF-BLG/AG mixtures, revealing rapid sedimentation/coalescence of particles. This precluded the achievement of a stable correlation function. For the 2:1 Pr:Ps ratio, mixtures exhibited both coalescence and sedimentation phenomena as confirmed by shifts in the g(2)(t) towards larger correlation times and the decrease of the initial value of g(2)(t) with time. Mixtures obtained for the 1:1 Pr:Ps ratio were characterised by small variations in the DWS signal, emphasising the stability of produced particles. The increase of the total biopolymer concentration reduced the effect of both Pr:Ps ratio and presence of protein aggregates. From CSLM and DWS observations, possible differences in the complex coacervation mechanism in both types of mixtures were highlighted. The use of protein aggregates to control complex coacervation was underlined.  相似文献   

17.
We investigate the molecular charge heterogeneity of gelatin molecules at three different pHs: isoelectric pH = 5 (pI), and at pHs = pI ± 1 by measuring the zeta potential distributions. Its effect on the formation of soluble intermolecular complexes induced by the presence of a nonsolvent, ethanol, was explored. The charge distributions were found to be symmetric at pH = 5, where the onset of binding, and formation of soluble complexes were observed to be facilitated by the presence of a small net charge (close to zero) with the molecules exhibiting polyampholyte (PA) behavior. These distributions turned asymmetric at pH = 6, yet complex formation and coacervation occurred. On the other hand, for pH = 4 samples, these distributions were found to be strongly asymmetric with the molecules possessing very high net positive charge, such a system did not yield coacervation. The PA to polyelectrolyte transition and its repercussion on coacervation has been discussed in the light of the experimental results obtained from electrophoresis, turbidimetry, atomic force microscopy, and nanoindentation studies. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1511–1520, 2007  相似文献   

18.
油醇(十八烯醇)与乙酸酐的摩尔比为1/1.7,催化剂对甲苯磺酸用量为油醇与乙酸酐总质量的0.2%,25℃反应3h合成了昆虫性激素成分之一的乙酸油酯并对其进行了表征.以高分子电解质乳清蛋白(WP)和阿拉伯胶(GA)进行复凝聚制备聚合物微胶囊,对影响复凝聚的pH、两种电解质的配比及其浓度等因素进行了考察.结果表明在pH=3.5,WP/GA质量比1.5,WP和GA总浓度1.0%时复凝聚效果最佳.在该条件下以WP/GA为壁材对乙酸油酯进行了包覆,制备了不同壁材总浓度的载油微胶囊,对微胶囊的载油量和包覆率进行了测量.随着壁材总浓度的增大,芯材乙酸油酯包覆率呈现先上升后下降的变化趋势.用扫描电镜观察,发现制备的载乙酸油酯微胶囊大小在5~8μm并且乙酸油酯以核壳式结构的形式被包覆在微胶囊内部.  相似文献   

19.
20.
The effect of hydrated radii, valency, and concentration of counterions on the coacervation of aqueous petroleum sulfonate solutions and on the solubilization capacity of oil-external and middle-phase microemulsions was investigated. The critical electrolyte concentration (CEC) for coacervation increased with Stokes' hydrated radii of monovalent counterions. The CEC for CaCl2 was much lower than that predicted by either the Stokes' hydrated radii or the ionic strength. For mixed electrolytes containing NaCl and CaCl2, it was concluded from the shift in CEC that 1 mole of CaCl2 is equivalent to 16 to 19 moles of NaCl. The changes in relative concentrations of NaCl and CaCl2 for coacervation exhibited additive behavior. The maximum solubilization of brine in oil-external microemulsions occurred at a specific salt concentration. For mixed electrolytes containing NaCl and CaCl2, the shift in electrolyte concentration for maximum solubilization showed that 1 mole of CaCl2 is equivalent to about 4 moles of NaCl. These results suggest that the equivalence ratio of CaCl2 to NaCl is strikingly different in aqueous solutions and oil-external microemulsions. For solubilization in middle-phase microemulsion containing mixed NaCl and CaCl2, it was concluded from the shift in optimal salinity that 1 mole of CaCl2 is equivalent to about 16 moles of NaCl. Here also the changes in NaCI and CaC12 concentrations showed additive behavior. The equivalence ratio of CaCl2 and NaCl appears to be independent of oil chain length in the present study. As shown by the equivalence ratio of CaCl2 to NaCl, the formation of middlephase microemulsions appears to be similar to coacervation of aqueous surfactant solutions and quite different from the solubilization of water in oil-external microemulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号