首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermosensitive anionic block copolymers of sodium 2‐acrylamido‐2‐methylpropanesulfonate (AMPS) and N‐isopropylacrylamide (NIPAAM) with different block lengths were prepared by atom transfer radical polymerization (ATRP). Controlled polymerization was achieved by using ethyl 2‐chloropropionate (ECP) as initiator and CuCl/CuCl2/tris(2‐dimethylaminoethyl)amine (Me6TREN) catalytic system in DMF:water 50:50 (v/v) mixtures at 20 °C. Blocks lengths ranging from 36 to 98 repeating units were obtained. The association properties in aqueous solutions at different NaCl ionic strengths were studied as a function of temperature and polymer concentration by dynamic light scattering, fluorescence spectroscopy, and energy‐filtered transmission electron microscopy. The block copolymers with a higher pNIPAAM/pAMPS ratio formed spherical core‐shell type micelles independently of the ionic strength. The block copolymers with lower pNIPAAM/pAMPS ratio formed core‐shell type micelles at high ionic strength. Larger particles were observed at low ionic strength, which could be due to the formation of vesicles or compound micelles/micellar clusters. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4830–4842, 2008  相似文献   

2.
We report on the micellization behavior of tri‐ and tetrablock copoly(2‐oxazoline)s in water–ethanol mixtures. The copolymers are based on different combinations of 2‐methyl‐, 2‐ethyl‐, 2‐phenyl‐, and 2‐nonyl‐2‐oxazoline. The solvophilic/solvophobic balance of these copolymers can be tuned thanks to the solubility dependence of the poly(2‐phenyl‐2‐oxazoline) block on the solvent composition. Characterization of the obtained micelles by dynamic light scattering and transmission electron microscopy revealed that their size and morphology depend on the solvophobic content of the copolymers and on the block order. Spherical micelles are always obtained when poly(2‐nonyl‐2‐oxazoline) is the only solvophobic block. When the solvophobic fraction consists of both the poly(2‐phenyl‐2‐oxazoline) and poly(2‐nonyl‐2‐oxazoline) blocks, spherical and cylindrical micelles as well as vesicles have been observed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3095–3102, 2010  相似文献   

3.
Generation 3.5 poly(amido amine) dendron (G3.5) with 16 n‐butyl terminal groups containing an acrylamide monomer (AaUG3.5) was prepared by condensation between an amino focal group in G3.5 and 11‐acrylamidoundecanoic acid. AaUG3.5 was polymerized using poly(2‐methacryloyloxyethyl phosphorylcholine) (pMPC)‐based macro‐chain transfer agent via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to obtain amphiphilic diblock copolymers with different compositions. The diblock copolymers (PmDn) were composed of a hydrophilic pMPC block and hydrophobic pendant dendron‐bearing block, where P and D represent pMPC and pAaUG3.5, respectively, and m and n represent the degree of polymerization for each block, respectively. P296D1 and P98D3 formed vesicles and large compound micelles and vesicles, respectively, which was confirmed by light scattering measurements and transmission electron microscopic (TEM) observations. The large compound micelles formed from P98D3 could not incorporate hydrophilic guest polymer molecules, because the aggregates did not have a hydrophilic hollow core. In contrast, the vesicles formed from P269D1 could incorporate hydrophilic guest polymer molecules into the hollow core. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4923–4931  相似文献   

4.
Amphiphilic AB‐type diblock copolymers composed of hydrophobic poly(L ‐lactide) (PLA) segments and hydrophilic poly(glycolic acid lysine) [poly(Glc‐Lys)] segments with amino side‐chain groups self‐associated to form PLA‐based polymeric micelles with amino surfaces in an aqueous solution. The average diameter of the loose core–shell polymeric micelles for poly(Glc‐Lys) [number‐average molecular weight (Mn) = 1240]‐b‐PLA (Mn = 7000) obtained by a dimethyl sulfoxide/water dialysis method was estimated to be about 50 nm in water by dynamic light scattering measurements. The size and shape of the obtained polymeric micelles were further observed with transmission electron microscopy and atomic force microscopy. To investigate the possibility of applying the obtained PLA‐based polymeric micelles as bioabsorbable vehicles for hydrophobic drugs, we tested the entrapment of drugs in poly(Glc‐Lys) (Mn = 1240)‐b‐PLA (Mn = 7000) micelles and their release with doxorubicin as a hydrophobic drug. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1426–1432, 2002  相似文献   

5.
The activation studies for catalytic reduction of nitrobenzene to aniline by iridium(I) complexes, [Ir(COD)(amine)2]PF6 (COD=1,5-cyclooctadiene, amine =4-picoline, 3-picoline, 2-picoline, or pyridine) heterogenized on poly(4-vinylpyridine) in aqueous 2-ethoxyethanol are described. The aniline formation (mmol, based on CO2 formed after 9 h) followed the order: 4-picoline (0.068)>2-picoline (0.052)>3-picoline (0.046)≥pyridine (0.042) for 1.0×10−4 mol Ir/0.5 g of polymer, 0.26 mL of nitrobenzene, 10 mL of 2-ethoxyethanol/water, 8/2, v/v, P(CO)=0.9 atm, at 100°C.  相似文献   

6.
The double hydrophilic block copolymer poly(ethylene glycol mono-methyl ether)-block-poly(4-vinylpyridine) (mPEG43-b-P4VP115) was synthesized by atom transfer radical polymerization. The structure, molecular weight and molecular weight distribution of mPEG43-b-P4VP115 were characterized by 1H-NMR and gel permeation chromatography combined with laser light scattering technique. The complex micelles based on mPEG43-b-P4VP115 and the disodium 2-naphthol-3,6-disulfonate were obtained in acid aqueous solution. The morphologies of the complex micelles were observed by transmission electron microscopy. The revertible temperature and pH-responsive behaviors of complex micelles were studied by dynamic light scattering and fluorescence techniques.  相似文献   

7.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Amphilic triblock copolymers with varying ratios of hydrophilic poly[bis (methoxyethoxyethoxy)phosphazene] (MEEP) and relatively hydrophobic poly(propylene glycol) (PPG) blocks were synthesized via the controlled cationic‐induced living polymerization of a phosphoranimine (Cl3P?NSiMe3) at ambient temperature. A PPG block can function as either a classical hydrophobic block or a less hydrophobic component by varying the nature of a phosphazene block. The aqueous phase behavior of MEEP‐PPG‐MEEP block copolymers was investigated using fluorescence techniques, TEM, and dynamic light scattering (DLS). The critical micelle concentrations (cmcs) of MEEP‐PPG‐MEEP block copolymers were determined to be in the range of 3.7–16.8 mg/L. The mean diameters of MEEP‐PPG‐MEEP polymeric micelles, measured by DLS, were between 31 and 44 nm. The equilibrium constants of pyrene in these micelles ranged from 4.7 × 104 to 9.6 × 104. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 692–699, 2009  相似文献   

9.
Abstract

A series of tertiary amine containing PHMEMA-PEG-PHMEMA ABA triblock copolymers were synthesized by atom transfer radical polymerization (ATRP) using bromine-capped poly(ethylene glycol) (Br-PEG-Br) and 2-(hexamethyleneimino)ethyl methacrylate (HMEMA) as macro-initiator and monomers, respectively. The chemical structures and molecular weights of triblock copolymers were characterized by 1H NMR and gel permeation chromatography (GPC). The self-assembly behaviors of copolymers in different pH conditions were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Triblock copolymers self-assembled into micelles in water (pH 7.4) and the micelles disassembled at acidic pH (pH 5.0). Anticancer drug doxorubicin (DOX) was used as a drug model and physically encapsulated into polymeric micelles. The drug release of DOX-loaded polymeric micelles was pH-responsive; the drug-loaded micelles that had higher contents of tertiary amine in polymer pendant groups showed faster release speed. In addition, the drug-loaded micelles showed excellent inhibition efficacy against HeLa cells in vitro.  相似文献   

10.
A series of amphiphilic triblock polymers based on poly(ethylene glycol) (PEG) and two symmetrical poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) blocks was synthesized via the Atom Transfer Radical Polymerization (ATRP) method. Conductivity, pH, and viscosity tests demonstrated the CO2-switchability jointly; Cryogenic transmission electron microscopy (Cryo-TEM), Dynamic light scattering (DLS) revealed the self-assembly morphology transformation from unilamellar vesicle to network structure when bubbling CO2. These changes were all attributed to the protonation of tertiary amine groups in PDMAEMA blocks and the mechanism was proved by ?H NMR. The vesicles have a relatively low release rate of drug; once stimulated by CO2, the release rate will be accelerated. The polymeric vesicle has the possibility to find potential applications in drug delivery and release domains.  相似文献   

11.
A supramolecular AB diblock copolymer has been prepared by the sequential self-assembly of terpyridine end-functionalized polymer blocks by using Ru(III)/Ru(II) chemistry. By this synthetic strategy a hydrophobic poly(ferrocenylsilane) (PFS) was attached to a hydrophilic poly(ethylene oxide) (PEO) block to give an amphiphilic metallo-supramolecular diblock copolymer (PEO/PFS block ratio 6:1). This compound was used to form micelles in water that were characterized by a combination of dynamic and static light scattering, transmission electron microscopy, and atomic force microscopy. These complementary techniques showed that the copolymers investigated form rod-like micelles in water; the micelles have a constant diameter but are rather polydisperse in length, and light scattering measurements indicate that they are flexible. Crystallization of the PFS in these micelles was observed by differential scanning calorimetry, and is thought to be the key behind the formation of rod-like structures. The cylindrical micelles can be cleaved into smaller rods whenever the temperature of the solution is increased or they are exposed to ultrasound.  相似文献   

12.
陈学思 《高分子科学》2013,31(2):318-324
Polyion complex (PIC) micelles were spontaneously formed in aqueous solutions through electrostatic interaction between two oppositely charged block copolymers, poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) and poly(N-isopropylacrylamide)-b-poly(L-lysine). Their controlled synthesis was achieved via the ring opening polymerization of N-carboxyanhydrides (NCA), ε-benzyloxycarbonyl-L-lysine (Lys(Z)-NCA) or γ-benzyl-L-glutamate (BLG-NCA) with amino-terminated poly(N-isopropylacrylamide) macroinitiator and the subsequent deprotection reaction. The formation of PIC micelles was confirmed by dynamic light scattering and transmission electron microscopy. Turbidimetric characterization suggested that the formed PIC micelles had a concentration-dependent thermosensitivity and their phase transition behaviors could be easily adjusted either by the block length of coplymers or the concentration of micelles.  相似文献   

13.
The aggregate structures formed during vesicle solubilization by sodium cholate, and their properties, were characterized by static laser light scattering (SLS) and electrophoretic light scattering (ELS) methods. The change in dissymmetry value Z45 was observed by examining the regions of vesicles and micelles. The angular light scattering intensity data could be fitted with a modified shell model for the vesicles and a hollow cylinder model for the mixed micelles. In the case of the vesicles, the scattering curves were fitted with a spherical shell model by introducing the interparticle scattering factor S(q) and taking into account the intervesicle positional correlations, which is a function of the fractal dimension (D) and the interparticle correlation length (L). On the basis of the physical meanings of the fractal dimension and interparticle correlation length, the molecular packings of the membrane and the repulsive interaction between the vesicles were analyzed. Furthermore, using electrophoretic light scattering (ELS) the zeta potentials on the mixed vesicles were found to increase with the molar ratio (Re) of sodium cholate to egg yolk phosphatidylcholine (EggPC) in the membrane. It is suggested that the electrostatic properties of the vesicles result in repulsive interaction which is responsible for no fusion of the mixed vesicles. In addition, in the transition from vesicles to micelles, a cylinder-like micelle appeared as an intermediate structure.  相似文献   

14.
Summary: Dynamic light scattering (DLS) and fluorescence experiments were carried out to study PCL44-b-PEO114 biocompatible micelles used as nanocarriers in drug delivery. Micelles prepared by a simple procedure (THF removal under nitrogen flow) exhibited a narrow size distribution with an average diameter of 100 nm. For micelles containing a hydrophobic model compound (pyrene) within the PCL core, a smaller average micellar size of 80 nm was observed, with a simultaneous broadening in the size distribution profile. In parallel to DLS results, fluorescence experiments showed evidence of pyrene encapsulation, and that the onset of the micellization process occurs at approximately 10/90 (v/v) THF/water mixtures in the case of PCL44-b-PEO114 polymer.  相似文献   

15.
《Analytical letters》2012,45(17):2693-2707
The micellization behavior of novel tertiary amine methacrylate-based ABA type triblock copolymers formed by poly[2-(dimethylamino)ethyl methacrylate] [PDMA] middle block and poly[2-(diethylamino)ethyl methacrylate] [PDEA] or poly[2-(diisopropylamino)ethyl methacrylate] [PDPA] side blocks, PDPAm-b-PDMAn-b-PDPAl, and PDEAm-b-PDMAn-b-PDEAl was investigated. Both types of triblock copolymers were water-soluble and had potential for various applications due to their self-assembled and the bottom-up nanoscale micellar construction. The micellar aggregations of the triblock copolymers in aqueous solutions with varying comonomer ratios, molecular weights, temperatures, and pH values were investigated by small-angle X-ray scattering and dynamic light scattering. Compact micellar aggregations were obtained as 0.5 weight percent solutions at 20–21°C and pH 8.67 to 9.05, and characterized as polydispersed spherical core-shells. One group of triblock copolymer micelles had PDPA-cores with radii from 18 to 21 Å and PDMA-shell thicknesses of 89–105 Å, whereas the other group had PDEA-core spherical micelles with core radii of 60–62 Å and a PDMA-shell thicknesses of 64–66 Å.  相似文献   

16.
Multistimuli‐responsive precise morphological control over self‐assembled polymers is of great importance for applications in nanoscience as drug delivery system. A novel pH, photoresponsive, and cyclodextrin‐responsive block copolymer were developed to investigate the reversible morphological transition from micelles to vesicles. The azobenzene‐containing block copolymer poly(ethylene oxide)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐6‐(4‐phenylazo phenoxy)hexyl methacrylate) [PEO‐b‐P(DEAEMA‐co‐PPHMA)] was synthesized by atom transfer radical polymerization. This system can self‐assemble into vesicles in aqueous solution at pH 8. On adjusting the solution pH to 3, there was a transition from vesicles to micelles. The same behavior, that is, transition from vesicles to micelles was also realizable on addition of β‐cyclodextrin (β‐CD) to the PEO‐b‐P(DEAEMA‐co‐PPHMA) solution at pH 8. Furthermore, after β‐CD was added, alternating irradiation of the solution with UV and visible light can also induce the reversible micelle‐to‐vesicle transition because of the photoinduced trans‐to‐cis isomerization of azobenzene units. The multistimuli‐responsive precise morphological changes were studied by laser light scattering, transmission electron microscopy, and UV–vis spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The conformation of various basic poly (-amino acid)s was investigated by CD measurements in aqueous solutions containing bis (2-ethylhexyl)sodium sulfosuccinate (AOT) as well as in the AOT reversed micelles. The addition of AOT into an aqueous solution of poly(L-lysine) induces the conformational transition from coil to ordered structure, followed by aggregation. On the other hand, poly(L-lysine) assumes-structure in the reversed micelles at low wovalue (wo=[H2O]/[AOT]). Similarly to poly(L-lysine), poly(L-ornithine) takes an ordered structure in the aqueous solution containing AOT and-structure in the reversed micelles. In this case, however, these ordered structures are not so stable, compared with that of poly(L-lysine). Poly(L-arginine) undergoes the conformational transition from coil to helix by addition of AOT into the aqueous solution. Further addition of AOT allows transformation into-structure. Copoly(L-lysyl-L-leucine) with 63% leucine residue was shown to take a stable helical conformation even in pure water. In the reversed micelles, however, this ordered structure is significantly changed probably because the hydrophobic interaction among the leucyl residues is lowered in the reversed micelles.  相似文献   

18.
A comprehensive dynamic light scattering (DLS) study on the system BP10Na4/water is presented. BP 10Na4 is a tetrameric fatty acid in sodium form. In order to change molecular packing conditions both electrolyte (NaCl) and alcohol (1-butanol, 1-pentanol) are added to the surfactant system. Phase diagrams of the systems reveal not only an extensive micellization, but also the occurrence of a lamellar liquid crystalline D phase. The DLS study shows an existence of vesicles at very dilute BP10Na4 concentrations ( ?cmc) and also a co-existence of micelles and vesicles at higher BP10Na4 concentrations. Cryo-TEM pictures verify the existence of the vesicles. Based on the DLS and SLS experiments the weight-average molar mass of the micelles are estimated to be 13500 g/mol at 100 mM NaCl and 22700 g/mol at 600 mM. The corresponding aggregation numbers are 13 and 22, respectively.  相似文献   

19.
Temperature responsive copolymers of dextran grafted with poly(N-isopropylacrylamide) (Dex-g-PNIPAAM) were prepared by atom transfer radical polymerization (ATRP) in homogeneous mild conditions without using protecting group chemistry. Dextran macroinitiator was synthesized by reaction of dextran with 2-chloropropionyl chloride at room temperature in DMF containing 2% LiCl. ATRP was carried out in DMF:water 50:50 (v/v) mixtures at room temperature with CuBr/Tris(2-dimethylaminoethyl)amine (Me6TREN) as catalyst. Several grafted copolymers with well defined number and length of low polydispersity grafted chains were prepared. Temperature induced association properties in aqueous solution were studied as a function of temperature and polymer concentration by dynamic light scattering, fluorescence spectroscopy and atomic force microscopy (AFM). LCST, ranging from 35 to 41 °C, was significantly affected by number and length of grafted chains. The fine tuning of LCST around body temperature is an important characteristic not obtainable by conventional radical grafting of PNIPAAM. Well defined spherical nanoparticles were formed above the LCST of PNIPAAM. Hydrodynamic diameter was in the range 73-98 nm.  相似文献   

20.
Multistimuli responsive grafted poly(ether tert‐amine) (gPEAs), which were comprised of poly(propylene oxide) (PPO) in backbone and poly(ethylene oxide) (PEO) as grafted chain, were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial poly(propylene glycol) diglycidyl ether and Jeffamine L100. These gPEAs exhibit very sharp response to temperature, pH and ionic strength with tunable cloud point (CP). The CP of gPEA aqueous solution increases with increasing the PEO content or decreasing pH value, varying from 27 to 77 °C. Compared with linear PEA101, gPEA110 of completely grafted structure in aqueous solution exhibits sharper response to temperature with ΔT around 1 °C. The results obtained from TEM and dynamic light scattering reveal that gPEAs are dispersed as uniform sized nano‐micelles in aqueous at room temperature, which can further aggregate into mesoglobules of complex structure at high temperature (>CP). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6353–6361, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号